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Abstract


This document is a release of a primer manual for using the Hierarchical Data Format (HDF) 
and extensions (HDF-EOS) in Earth Observing System (EOS), Version 1 and later. We confine 
our discussion in this document to HDF V4 and the versions of HDF-EOS (V2), which are based 
on that version of HDF. A new version of HDF (V5) has been released.  Additional material for 
HDF5 and versions of HDF-EOS, based on HDF5 will be provided in a separate document. 

Comments and suggestions should be sent to: 

Larry Klein 
Emergent Information Technologies 
9315 Largo Dr. West, Suite 250 
Largo, MD  20774 USA 

Email: larry@eos.hitc.com 
Phone: (301) 925-0764 
Fax: (301) 925-0321 

Keywords: HDF, HDF-EOS, Swath, Grid, Point, Data Formats, Metadata, Standard Data 
Products, Disk Formats, Browse 
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1. Introduction 

1.1 Purpose of this Document 

The purpose of this document is twofold. The first purpose is to introduce the Earth Observing 
System Data and Information System (EOSDIS) Version 1 (V1) community to the HDF file 
format that has been chosen as the EOSDIS Core System (ECS) Standard Data Format Our 
intention is to provide enough background information so that EOS personnel that need to use 
HDF today can do so as easily as possible.  Additional and more detailed information is 
provided in referenced Users Guides. 

The second purpose of this document is to discuss extensions to HDF, developed for the ECS 
program. These extensions are called HDF-EOS and are primarily used to provide project-wide 
standards for attaching geo-spatial and temporal information to science data. The format is also a 
container for inventory and product specific metadata, the information also stored in ECS 
databases, used for search and order functions. 

1.2 Organization of this Document 

Section 2 presents an overview of the HDF file format, and how the current file format maps to 
EOS data. In particular, we go over basic HDF concepts such as general philosophy and core 
data types. We next discuss NCSA HDF library routines in detail. 

Section 3 presents the HDF-EOS format. This new format consists of the HDF standard with 
EOS conventions. We discuss the overall philosophy of HDF-EOS and the HDF-EOS data types 
that we support. 

In Section 4, related and supplemental reference material is presented. ECS metadata and browse 
data are discussed.  In addition we discuss EOSView, our ‘HDF-EOS cracker tool.’ 

A section on related and supplemental reference material is provided 

Appendix A provides information on how to obtain the software libraries. 

Appendix B discusses issues related to HDF and HDF-EOS usage. 

1.3 HDF and EOS: Introduction 

The Hierarchical Data Format (HDF) was selected by the NASA ESDIS Project as the format of 
choice for standard product distribution. HDF was originally developed by the National Center 
for Supercomputing Applications (NCSA) at the University of Illinois to help with the storage of 
supercomputer simulation results. 

Documentation on the disk format of HDF files is readily available. This is in contrast to other 
general scientific formats, such as network common data format (netCDF) and common data 
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format (CDF), where the emphasis on the data model is strong and documentation on the disk 
format is limited. 

At the most basic level, an individual HDF file consists of a directory and a collection of data 
objects. Every data object has a directory entry, containing a pointer to the data object location, 
and a flag defining the datatype for that data object. NCSA has defined around a hundred 
different datatypes; users can define additional datatypes. 

Many of the NCSA defined datatypes map very well to EOS datatypes used to store remotely 
sensed Earth science data products. Examples would include raster images, multi-dimensional 
arrays, and text blocks. There are other EOS datatypes that do not map as well to NCSA 
datatypes. Examples would include gridded data. 

The HDF format is known for its generality, in that there are a very large number of legal ways 
to organize data in an HDF file. But this generality comes at a price: there is no guarantee that 
all data producers will store particular information such as geolocation in a particular way in the 
HDF files. Likewise, temporal information associated with science data could be stored in a 
variety of ways. 

There were two ways to solve this problem: one way would be to explicitly define the layout of 
every EOS standard data product, and then incorporate these layout decisions in a subroutine 
library. The other method, and the one that we implemented as HDF-EOS V2, is to define new 
EOS specific datatypes such as Grid, Swath, and Point, that contain information in a specific 
structure. That way, the HDF-EOS library has to know only about these structures, and not about 
every single data product. 

The goal is to make HDF-EOS files completely self-describing, so no outside information will 
be needed to display the information contained in the files. The HDF-EOS library is intended to 
make data access much more convenient for both producers and users. 

NOTE: In this document, we discuss HDF V4 and versions of HDF-EOS (2.X), based on 
HDF4. Current Landsat 7, TRMM and EOS Terra instrument data, now being processed and 
archived in ECS Distributed Active Archive Centers (DAACs) are based on HDF4 and HDF-
EOS 2 formats.  Data from instruments on EOS Aqua, to be launched in 2001, are also based on 
those formats. Many EOS ancillary data products, such as Digital Elevation Model (DEM) data 
and converted NOAA GIRD and BUFR data are also written in HDF-EOS 2. 

NCSA has released HDF5, which is a nearly complete rewrite of HDF4. HDF5 has a different 
user interface and underlying data model.  HDF-EOS V5, based on HDF5 is available to EOS 
instrument teams and is the format of choice for EOS-Aura teams. Aura is scheduled to be 
launched in 2003.  HDF-EOS 5. is designed to be very similar to HDF-EOS 2, supporting the 
same Grid, Swath, and Point data structures.  Access to and conversions between both formats 
will be provided.  It is anticipated that the HDF standard will migrate to HDF5-based files in the 
future. It is not anticipated however, that conversions will be done on EOS standard products 
until several years following public releases in 2000.  It will be our goal with HDF-EOS 5. 
development, to make the differences between the underlying HDF4 and HDF5 formats, as 
transparent to users as possible.  HDF5 and HDF-EOS 5 will be discussed in a separate Primer. 
References to HDF in this document refer to HDF4 and HDF-EOS 2. 
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1.4 HDF and EOS: General Philosophy 

For reference, we include the initial NASA direction concerning EOS and standard formats for 
EOS standard products. The following is a statement from the Earth Science Data and 
Information System (ESDIS) office concerning HDF: 

“The Earth Science Data and Information System Project has undertaken an analysis of 
available data format standards over the last 4 years. This analysis received input from 
Distributed Active Archive Centers (DAACs), EOS Instrument Investigators, related 
earth science projects, international investigators, computer scientists, and other members 
of the EOS community. 

As a result of this study, the ESDIS Project selected the National Center for 
Supercomputer Applications' Hierarchical Data Format (HDF) as the Standard Data 
Format (SDF) for Version 0 System distribution of science data. 

Based on successful experience in Version 0, including use by ECS DAACs, the 
Pathfinder project, and associated earth science projects, the ESDIS Project plans to 
adopt HDF as the baseline EOSDIS Standard Data Format for science and science
related data. In 1994, HDF was adopted as a baseline standard for EOSDIS Core System 
development of standard data product generation, archival, ingest, and distribution 
capabilities. 

The ESDIS Project will support the evolution of the EOSDIS SDF as needed to meet the 
requirements of science data users and producers. ” 

This statement provided for the beginning of HDF and HDF-EOS development for the ECS 
Project. 
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2. An Introduction to HDF 

The purpose of this part of the primer is to give a conceptual overview of HDF, and how EOS 
data may fit into the existing HDF structure. This material is not meant to be a replacement for 
the HDF manuals available from NCSA, but as a help in the comprehension of the concepts 
presented there. (See documents and software at: http://hdf.ncsa.uiuc.edu) 

2.1 HDF Concepts 

The Hierarchical Data Format, or HDF, is a multi-object file format for storing scientific data in 
a distributed environment.  HDF was created at the National Center for Supercomputing 
Applications to serve the needs of diverse groups of scientists working on projects in various 
fields.  HDF was designed to address many requirements for storing scientific data, including: 

• Support for the types of data and metadata commonly used by scientists. 

• Efficient storage of and access to large data sets. 

• Platform independence. 

• Extensibility for future enhancements and compatibility with other standard formats. 

HDF is a disk format and subroutine library for storage of most kinds of scientific data. HDF is 
intended for use in the storage of any kind of scientific data, although support is strongest for 
multi-dimensional arrays and raster images. It also contains very good support for the 
organization of data into hierarchical layers. 

The HDF disk format is strictly binary, although ASCII text annotations are supported. There is 
a very strong emphasis on portability and machine independence, unusual for a binary format. A 
strength of HDF is that a single data file can contain several different types of objects. A color 
image of a molecule may be stored in the same file as the data object containing the actual 
positions of the atoms in space. The file may also contain an ASCII text annotation notebook 
describing the molecule. 

At its most fundamental level, an HDF file consists of a directory and an unordered set of binary 
data elements. For the most part, the directory entries match up one-to-one with the binary data 
elements that follow. Each directory entry describes the location, the type, and the size of the 
corresponding element. We discuss the disk format in depth in Section 2.3. 

The HDF subroutine library is designed to be very easy for C and FORTRAN programmers to 
use. Many simple HDF reads and writes can be accomplished with a single subroutine call. For 
example, to write a C character array that represents an 8-bit color image to an HDF file, the 
following HDF call is all that is required (the FORTRAN example is similar). 

2-1 175-WP-001-002




ret=DFR8addimage("myfile.hdf",image1,rows,cols,0); 

Figure 2-1. HDF call to write an 8-bit image 

This single call to the routine DFR8addimage creates the file ‘myfile.hdf’, opens it, initializes 
‘myfile.hdf’ as an HDF data file, writes the image to ‘myfile.hdf’, adds an HDF directory 
entry in the file for the image, and closes the file. The last argument in the call specifies the 
compression method, here 0 (no compression). 

The HDF library is accessible from both C and FORTRAN programs because it contains a set of 
‘wrapper’ functions that make the underlying C code callable from FORTRAN. Some 
FORTRAN compilers only accept function names that are eight or fewer characters. HDF 
therefore provides two names for each function; one for use in C programming and a shorter 
version for use in FORTRAN programming. For example, d8aimg is the FORTRAN equivalent 
for DFR8addimage. We discuss the HDF subroutine library in depth in Section 2.2. 

Among widely used general scientific data formats, HDF may be unique in that the HDF 
libraries and manuals are in the public domain. This means that the HDF software and 
documentation can be used in commercial products without any licensing or even 
acknowledgment. The best source for HDF materials is via the NCSA anonymous file transfer 
protocol (ftp) server (See Appendix B). 

2.2 Overview of the NCSA HDF Library 

The HDF library can be thought of as three interface layers built upon a physical file format. 
The first interface layer, or the low level layer, is reserved for software developers. It provides 
support for things like file I/O, error handling, memory management, and physical storage. It is 
essentially a software toolkit for skilled programmers who wish to make HDF do something 
more than what is currently available through the higher level interfaces. 
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HDF Low Level Layer 

NCSA ApplicationsHDF Utilities 3rd Party Applications 

HDFApplication Layer 

HDF Physical File Format 

Figure 2-2. The HDF physical file format supports three levels of interaction 

Above the low level interface layer is the HDF single file and multi-file application layer. The 
application layer includes routines designed to simplify the process of storing and accessing data. 
Most HDF developers spend the majority of their time working with the application interface. 
Although each interface module requires some programming, all the low level details can be 
ignored. 

At its highest level, HDF includes utilities, NCSA applications, and a variety of third party 
applications. Applications developed by NCSA, as well as applications contributed by HDF 
users, are freely available on the NCSA ftp server. In addition, several software vendors also 
support HDF. 

The HDF library consists of callable routines in the low level layer and in the application layer. 
Underneath each layer, the routines are grouped into interfaces. Each interface addresses a 
particular HDF function or a particular HDF data structure. All the callable routines within a 
particular interface begin with the same letters. The different interfaces are therefore known by 
these letters. Table 2-1 below lists all the HDF interfaces, grouped by layer. Examples of 
callable routines from each interface are given in the last column of the table. 
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Table 2-1. The HDF Interfaces 
Interface Description Example Routines (long names) 

Low Level Layer Interfaces 
H low level I/O, directory, query Hopen, Hread, Hwrite, Hcreate 
HDF new version of low level routines HDFopen, HDFclose 
HE low level error reporting HEreport, HEprint 
Single File Application Layer Interfaces (old) 
DFR8 read, write 8-bit raster images DFR8addimage, DFR8getdims 
DFP read, write color palettes DFPaddpal, DFPgetpal 
DF24 read, write 24-bit raster images DF24addimage, DF24setdims 
DFSD single file scientific dataset DFSDputdata, DFSDsetdimscale 
DFAN text annotation records DFANputlabel, DFANgetdesc 
Multi-file Application Layer Interfaces (new) 
SD multi-file scientific dataset SDstart, SDcreate, SDdiminfo 
NC netCDF interface nccreate, ncopen, ncvardef 
VS Vdata interface VSattach, VSfdefine, VSgetid 
VSQ Vdata query VSQuerycount, VSQueryname 
VF Vdata fields inquiry VFfieldsize, VFfieldname 
V Access, Specify, Inquire Vgroups Vattach, Vstart, Vsetname, Vgetid 
VH Simple Vdata, Vgroup creation VHmakegroup, VHstoredata 
GR  Generic raster image interface  Grcreate, GRreadimage 

Note the HDF APIs are divided into two categories: multifile interfaces (new) and single-file 
interfaces (old).  The multifile interfaces are those that provide simultaneous access to several 
HDF files from within an application, which is an important feature that the single-file interfaces 
do not support.  The new interfaces should be used at all times since they are an improvement 
over the old interfaces.  The old interfaces remain simply for backward compatibility. 

The most important of these interfaces include the scientific dataset interfaces, the vdata 
interfaces, and the Vgroup interfaces. They are described below. 

2.2.1 The Scientific Dataset Interfaces (DFSD, SD)


There are two HDF interfaces that support multidimensional arrays. The older one is a single-file 
interface (known as the ‘DFSD’ interface, because all the associated subroutines start with 
‘DFSD’) which permits access to only one file at a time. The newer one is a multi-file interface 
(known as the ‘SD’ interface), which permits simultaneous access to more than one file. We 
recommend the use of the newer multi-file interface for ECS users. 

The single-file DFSD interface provides a collection of routines for reading and writing an array 
of arbitrary rank and type. The array, along with its associated information, is known as a 
Scientific Data Set, or SDS for short. 
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The multi-file SD interface allows concurrent operations on more than one file and data object. 
The interface is also interoperable with the netCDF interface. By interoperable, we mean the 
netCDF interface as implemented in HDF can read both netCDF files and HDF files. Like the 
single-file DFSD interface, a data object written with the multi-file SD interface includes the 
normal SDS data element, DFTAG_SD. This data element specifies a unique tag-reference for the 
data object. However, the multi-file SD interface also includes many additional attributes that 
are not part of the single-file interface. 

In either interface, the multi-dimensional array in the SDS can contain 8-, 16-, 32-, or 64-bit 
signed or unsigned integers or 32- or 64-bit floating point numbers. (64-bit representations are 
supported only if the particular platform supports 64-bit operations.) The SDS can also contain 
the following attributes: 

• Coordinate system: Identifies which coordinate system to use when displaying data. 

• Formatting: Specifies the format for displaying values for data and attributes. 

• Label: Contains a name for each independent variable and the data. 

•	 Ranges: Stores the maximum and minimum values in the data, as supplied by the data 
producer. 

•	 Calibration: Describes the scale to use along each axis. E.g. specifies a linear scaling for axis 
values. 

• Fill Value: Defines the value to fill areas of no data or bad data at the users discretion. 

• Units: Identifies the unit associated with each dimension and the data. 

•	 Section 2.3.5 of this document shows examples of SDS data objects in HDF files. The multi
file SD interface subroutines are divided into the following categories: 

• Access routines that intialize and close the SD interface. 

•	 Create, read, and write SDS routines for defining and reading array dimensions, rank, 
number type, fill value, data range, calibration information, and data values. 

•	 Dimension attribute routines for defining and reading SDS attributes such as dimension 
name, format, unit, label, or scales. All attributes are optional. 

•	 General attribute routines for managing local attributes (attributes assigned to a data object) 
and global attributes (attributes assigned to a file). Predefined local attributes include the 
coordinate system, format, labels, max/min values, scales, and units. 

In EOS, we have given a strong emphasis to the multifile SD interface. 

2.2.2 The Vdata Interfaces (VS, VSQ, VF)


The HDF Vdata model, which includes the VS, VSQ, and VF interfaces, makes it easy to store 
tables of data in HDF files. Each table consists of a series of records, each of which contains a 
series of fields. By field, we mean a grouping of data elements within a record. Each field can 
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support its own number type. However, every record in a Vdata must contain the same fields. 
Valid number types include 8-, 16-, 32-, 64-bit signed and unsigned integers, 32- and 64-bit 
floating point numbers, and ASCII characters. 

Vdata tables use three kinds of identifying information: a name, a class, and a set of individual 
field names. A Vdata name is a label that typically describes the origin and contents of a table. A 
Vdata class typically identifies the meaning of data. Finally, Vdata field names identify the 
individual fields that make up a record. 

Vdata Name 

Vdata Class 

Field Names 
Record #1 
Record #2 
Record #3 

Temperature Table 

Class 
Field #1 Field #2 Field #3 
Latitude Longitude Temperature 
8-bit Int 8-bit Int 32-bit Float 
8-bit Int 8-bit Int 32-bit Float 
8-bit Int 8-bit Int 32-bit Float 

Figure 2-3. A Typical Vdata 

There are three Vdata interfaces. The VS Interface provides a collection of routines for reading 
and writing tables. The VS functions are divided into five categories: 

•	 Access routines which initialize and terminate access to a Vdata, and seek record position in 
a Vdata. 

• File inquiry routines provide information on how a Vdata is stored in a file. 

•	 Read/Write routine which define new Vdata fields, assign names and classes, and initialize 
read and write permissions. 

•	 Vdata inquiry routines which check if a Vdata exists, and return a Vdata’s class name or 
field names, its size, and whether it exists as a lone entity. By lone entry, we mean the it is a 
stand-alone object and not part of another object in the file. 

• Read/Write routines which retrieve and store Vdata records in HDF files. 

The VSQ and VQ interfaces are described in the HDF Users Guides. 

2.2.3 Vgroup interface (V)


The Vgroup interface provides a collection of routines for reading and writing groupings of HDF 
data objects in a particular HDF file. Each Vgroup may contain any number of other HDF data 
objects, even other Vgroups. In addition to its members, a Vgroup may also be given a Vgroup 
name and Vgroup class. The Vgroup name must be unique within a particular grouping of 
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objects that includes other Vgroups. Names don't have to be unique across stand-alone groupings 
of objects.  AN HDF file can consist of many Vgroups, plus stand-alone Vdatas and SDS's. 

Every function on a Vgroup begins with the prefix V. The Vgroup functions are divided into 
five categories: 

• Access/Create routines that begin and end access to Vgroups. 

•	 Manipulation routines modify Vgroups’ characteristics, and add and delete Vgroups’ 
members. 

• Vgroup inquiry routines obtain information about Vgroups. 

• Member inquiry routines obtain information about members of Vgroups 

• Attributes routines provide information about Vgroups’ attributes. 

2.3 Overview of the HDF Disk Format


It is easier to understand the HDF software if you first have a general understanding of HDF disk 
formats. An HDF data file consists of three main things: a magic number, a directory that points 
to data elements, and the data elements themselves. We start by describing the HDF file header. 

2.3.1 The HDF File Header


The first component of an HDF file is the file header, which takes up the first four bytes of the 
HDF file.  Specifically, it consists of four one-byte values that are ASCII representations of 
control characters:  the first is a control-N, the second is a control-C, the third is a control-S and 
the fourth is a control-A (^N^C^S^A).  The directory begins immediately after the file header. 

Note that, on some machines, the order of bytes in the file header might be swapped when the 
header is written to an HDF file, causing these characters to be written in little-endian order.  To 
maintain the portability of HDF file header data when developing software for such machines, 
this byte swapping must be counteracted by ensuring the characters are read and written in the 
desired order. 

The HDF definition of the term file header is in contrast to the more traditional view of a file 
header as a block of metadata at the beginning of a file. To avoid confusion over this point, we 
will not use the term ‘file header’ in this document. 

2.3.2 The HDF Directory


An HDF directory, called a DD list, is usually broken up into a series of components known as 
DD blocks. Each DD block contains just three things: the number of directory entries (known as 
Data Descriptors, or DDs) in that block, the byte location of the next DD block (or 0 if this is 
the last DD block), and then the actual directory entries. 

The first two bytes of each DD block contain a count of the number of entries in the block. The 
next four bytes contain the byte location of the next DD block. The actual DDs follow 
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immediately. Every DD is always exactly 12 bytes long. The layout of an HDF file with a single 
DD block containing two DDs is shown below. 

Table 2-2.  Organization of the beginning of an HDF file 
Location Value Comment 

0 to 3 ^N^C^S^A Unique HDF Number (^N = control-N, etc.) 
4 to 5 2 Number of DDs in DD Block 
6 to 9 0000 Location of next DD Block (none here) 

10 to 21 Data Descriptor #1 
22 to 33 Data Descriptor #2 

Note that the location of the next DD Block entry is given in bytes from the beginning of the 
HDF file. In fact, all locations within the HDF file are given in terms of bytes from the 
beginning of the file. This contrasts with some other disk formats which locate items solely by 
record numbers. There are no records, as such, in HDF. Since all locations are given in 32-bit 
signed integers, the maximum size of a self-contained HDF file or of a single data element is 
therefore around 2 X109 bytes, or 2 GigaBytes. 

2.3.3 HDF Data Descriptors


The single most important HDF concept is that of the Data Descriptors. Every single data 
element (e.g., image, array, annotation,Vgroup, etc.) in the HDF file has an associated Data 
Descriptor (DD) in the DD list. We will keep returning to this statement throughout the 
discussion. 

Every DD is of fixed length with four fields: a Tag field, which defines the data element type, a 
Reference Number field (Ref), which is unique for every data element with the same Tag, an 
Offset field, which gives the location of the data element in bytes from the start of the file, and a 
Length field, which gives the length of the data element in bytes. 

Table 2-3. HDF data descriptor layout 
Data Descriptor 

1 2 3 4 5 6 7 8 9 10 11 12 
Tag Ref Offset Length 

2.3.3.1 HDF Tags


The Tag field is defined as a 16-bit unsigned integer, which means there are 65535 possible 
types of data elements. (0 is not a legal tag number.) The possible tag values are divided into 
three ranges, as shown below. 

2-8 175-WP-001-002




Table 2-4. Ranges of possible tag values 
Tag Value Range Comment


00001 to 32767 Assigned by NCSA 
32768 to 64999 Defined by user 
65000 to 65535 Reserved for future use 

User-defined and NCSA-defined data element types can be freely intermixed in the same file. 
NCSA has defined utility tags for general data descriptions, raster image tags for descriptions of 
pseudocolor and color images, scientific dataset (SDS) tags for describing multi-dimensional 
arrays of numbers, the Vdata tag for defining tables of values, and the Vgroup tag for grouping 
data elements. A selection of these tags is shown below. 
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Table 2-5.  A selection of NCSA defined HDF tag types 
Tag Name Tag # Comments 

Utility Tags 

DFTAG_RLE 011 Specifies the Run Length Encoding used for image 
DFTAG_TID 102 Tag Identifier: text string of user defined tag 
DFTAG_DIL 104 Data Identifier Label: used for titles of elements 
DFTAG_DIA 105 Data ID Annotation: lengthy text annotation block 
DFTAG_NT 106 Number Type: values are float, integer, text, etc. 
DFTAG_MT 107 Machine Type: specifies IEEE or local computer type 

Raster Image Tags 

DFTAG_ID 300 Image Dimension: gives X and Y size of assoc. image 
DFTAG_LUT 301 Lookup Table: color lookup table for assoc. image 
DFTAG_RI 302 Raster Image: points to actual image data 
DFTAG_RIG 306 Raster Image Group: lists all DDs assoc. with image 
DFTAG_LD 307 LUT Dimension: size of color lookup table 
DFTAG_CFM 311 Color Format: grayscale, Pseudocolor, RGB, HSI, etc. 

Scientific Dataset Tags 

DFTAG_SDD 701 SDS Dimension: dimension sizes of scientific dataset 
DFTAG_SD 702 Scientific Data: points to actual scientific dataset 
DFTAG_SDS 703 Scientific Data Scales: Arrays for X,Y,Z locations 
DFTAG_SDL 704 SD Labels: text describing data and dimensions 
DFTAG_SDU 705 SD Units: text with units for data and dimensions 
DFTAG_SDF 706 SD Format: text with format code for displaying data 
DFTAG_SDM 707 SD Max/Min: minimum/maximum valid values for data 
DFTAG_SDC 708 SD Coordinate System: text string defining CS 
DFTAG_NDG 720 Numeric Data Group: lists all DDs assoc. with SD 

Vgroup/Vdata Tags 

DFTAG_VG 1965 Vgroup: provides general purpose grouping of DDs 
DFTAG_VH 1962 Defines the structure of a Vdata data element 
DFTAG_VS 1963 Points to Vdata data element using DFTAG_VH format 

2.3.3.2 HDF Reference Numbers


If you store two raster images in an HDF file, you will produce two DDs with the same tag 
number (DFTAG_RI). But this creates a problem: how does one know which DFTAG_RI is which? 

The answer is that a Reference number is assigned, usually by the HDF library, to each data 
object as it is written to the file. The library keeps track of the reference numbers that have been 
used in the file and guarantees that there will never be two data objects with the same tag and 
reference number in the same file. It is allowable for two objects to carry the same tag (such as 
our two raster images) or for two objects with different tags to carry the same reference number 
(such as a raster image and an SDS). 
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Although many DDs can have the same Reference number, the HDF standard demands that there 
is only one instance of a particular Reference number for a particular Tag. This means that every 
Tag/Ref combination is unique within a single HDF file. A Tag/Ref pair can then be used as a 
unique ID (known in HDF terms as a ‘data identifier’) to unambiguously identify particular data 
elements. 

It is important to note at this point that, with only one exception that we will discuss in a later 
section, one must take care not to infer meaning on the library’s choice of reference numbers. It 
will often be the case that some number of data objects in a file will have the same reference 
number. The only information that can be gleaned from this similarity in reference numbers is 
that the library is miserly in doling out new reference numbers. It reuses reference numbers in all 
cases where it can easily ascertain it to be safe to do so. Coincidentally, such cases often occur 
when writing out groups of data objects such as Raster Image Groups and Scientific Data Sets. 
However, this behavior is not an official part of the specification of HDF and it should never be 
relied upon. 

Although it would be tempting to use Reference numbers to group data elements, that method of 
associating data objects is lacking in that it does not support sharing of data objects between 
groups. Instead HDF uses Groups to define relationships. 

2.3.4 HDF Groups


The HDF libraries support explicit grouping of data elements using one of three group tags. The 
Raster Image Group Tag (DFTAG_RIG) is used to group all data objects associated with a 
particular raster image. The Numeric Data Group Tag (DFTAG_NDG) is used to group all data 
objects associated with a particular scientific dataset. The Vgroup tag (DFTAG_VG) supports a 
generalized grouping of all types of data objects, even other Vgroups. 

Table 2-6.  HDF group tags 
Tag Name Tag # Comments 

DFTAG_RIG 306 Raster Image Group: lists all DDs assoc. with image 
DFTAG_NDG 720 Numeric Data Group: lists all DDs assoc. with SDS 
DFTAG_VG 1965 Vgroup: provides general purpose grouping of DDs 

The data contained within these groups is a list of Data Identifiers associated with the group. 
Since the groups do not contain the offset values of the data elements, a DD is still needed in the 
DD list with this information. So again, all data elements must have a DD in the DD list. In 
addition, most will also have their Data Identifiers listed in some group. 

Both Raster Image Groups  (RIGs) and Numeric Data Groups (NDGs) consist of nothing but a 
list of Data Identifiers, each four bytes long (Vgroups are more complicated; see below). The 
number of Data Identifiers  in a RIG or NDG is just the length field divided by four. 
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In the table below, we show an HDF example file that uses Raster Image Groups (RIGs) to 
define two images of identical size. Note how, in this example, both raster image groups use the 
same image size data element. 

Table 2-7.  Organization of an HDF file with two raster image groups 
Location Length Value Comment


0 to 3 4 ^N^C^S^A Unique HDF Number 
4 to 5 2 5 Number of DDs in Block 
6 to 9 4 0000 Loc. of next DD Block 

Tag Ref Offset Length 
10 to 21 12 300 001 70 4 DD #1 (Image Size) 
22 to 33 12 302 001 90 60000 DD #2 (Ptr to Image#1) 
34 to 45 12 302 002 60090 60000 DD #3 (Ptr to Image#2) 
46 to 57 12 306 005 74 8 Ptr to 1st raster group 
58 to 69 12 306 006 82 8 Ptr to 2nd raster group 

X Size Y Size 
70 to 73 4 300 200 Size of both images 

Tag/Ref#1 Tag/Ref#2 
74 to 81 8 300/001 302/001 First raster group 
82 to 89 8 300/001 302/002 Second raster group 

Image Data 
90 to 60089 60,000 02h………23h Data for first image 

60090 to 120089 60,000 7Ah………19h Data for second Image 

RIGs can contain only raster image and related tags, and all the Data Identifiers in a particular 
group must relate to a single image. The same holds true for an NDG; only numeric data group 
tags (and some utility tags such as number type) are allowed, and they must all relate to a single 
numeric array. 

Vgroups do not have this limitation: they can contain any collection of Data Identifiers, 
including a Vgroup Data Identifier. This last feature means that you can construct a directory 
structure inside a single HDF data file, with directories containing data elements and/or sub 
directories. 

There is, however, a major difference between Vgroup organization and disk directories. In an 
HDF file, all groups including Vgroups contain Data Identifiers only, not full DDs. This means 
that a DD must still be in the main DD list for every single data element in the HDF file, 
regardless of how deeply it is referenced in a Vgroup hierarchy. 

For example, consider the HDF file shown below. (We have simplified a bit in this table, 
because the structure of Vgroup data elements is a bit more complicated than what is shown.) 
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Table 2-8.  Organization of an HDF file with two Vgroups 
Location Length Value Comment


0 to 3 4 ^N^C^S^A Unique HDF number 
4 to 5 2 3 Number of DDs in block 
6 to 9 4 0000 Loc. of next DD block 

Tag Ref Offset Lth 
10 to 21 12 300 001 46 4 DD #1 (Image size) 
22 to 33 12 1965 001 50 22 DD #2 (Vgroup #1) 
34 to 45 12 1965 002 72 22 DD #3 (Vgroup #2) 

X Size Y Size 
46 to 49 4 300 200 Image size 

Name Tag/Ref 
50 to 71 22 'Vone' 1965/002 First VGroup 
72 to 93 22 'Vtwo' 300/001 Second VGroup 

How this file is organized may not be immediately obvious. The graphic below may help. Here 
we show that the main DD list contains the ‘Vone’ Vgroup, which contains a single Data 
Identifier, a reference to the ‘Vtwo’ Vgroup. This Vgroup in turn contains a single Data 
Identifier reference to the Image Size entry. 

Vgroup 'Vone' 

Vgroup 'Vtwo' 

Image Size 

DD List 

Figure 2-4. Organizational Levels for Dataset Shown in Table 2-8 

The confusion is that every Data Identifier, even the one for ‘Vtwo’, is also listed in the DD list. 
How does someone know which Vgroup is at what level? The answer is that there is no unique 
way. 

You can use the HDF utility ‘Vshow’ to display a list of the contents of each directory. But what 
should the utility do if ‘Vone’ contained ‘Vtwo’, and ‘Vtwo’ contained ‘Vone’? Can a directory 
contain a directory that contains the original directory? Again, it is the responsibility of the data 
producer to ensure that the directory structure makes sense. 
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2.3.5 HDF Scientific Datasets


The most important data objects in HDF files are known as Scientific Datasets (SDS). A 
scientific dataset is a multidimensional array of numbers. The array can have any dimensionality 
up to 32767, and can consist of floating point or integer values. Since the release of HDF version 
3.3 there have been two separate interfaces for SDSs: the ‘DFSD’ interface (old) and the ‘SD’ 
interface (new). Each interface corresponds to a different physical organization of the SDS and, 
therefore, has slightly different capabilities. The most significant new features of the ‘SD’ 
interface are its ability to concurrently deal with multiple SDSs in multiple files, its ability to put 
arbitrary attributes on SDSs, and its compatibility with the netCDF interface. 

Although the ‘SD’ interface is the preferred interface for reading and writing SDSs in ECS, its 
physical implementation is a bit too complex to describe here. Therefore, we will discuss the 
physical implementation of the older ‘DFSD’ interface in order to illustrate the basic 
organizational concepts of the HDF library, then briefly touch on the differences between the 
two implementations. 

2.3.5.1 The ‘DFSD’ Interface


An SDS, whether created by the ‘DFSD’ or ‘SD’ interface, consists of several data objects that 
are associated with the SDS. These data objects are attributes, numerical scales, the actual data, 
and so on. In the ‘DFSD’ interface, all the DDs of the data objects associated with a particular 
SDS are listed in a numeric data group (DFTAG_NDG). In some old HDF files with 32-bit floating 
point SDSs, you may run across an SDS that uses the roughly equivalent scientific data group 
(DFTAG_SDG) to collect its members. In either case, only scientific data set tags (Table 2-5) and a 
few utility tags are allowed in a numeric data group. An example of the data contained in an 
SDS is shown below. 

1.67 
32.11 
31.96 
31.81 
31.66 
31.51 
31.36 
31.20 
31.05 
30.90 
30.75 

Time (sec) 

R
ad

iu
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(k
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) 

Density (gm/cm3) 

Neutron Star Accretion Simulation 

1.70 1.69 1.68 
0.5872 0.5872 0.5872 0.5872 
0.5872 0.5872 0.5872 0.5872 
0.5872 0.5872 0.5872 0.5872 
2.4117 2.4282 2.3604 2.4226 
2.0018 1.9963 1.9957 1.9976 
1.8153 1.8107 1.8102 1.8119 
1.6796 1.6745 1.6726 1.6768 
1.5802 1.5742 1.5736 1.5762 
1.4997 1.4956 1.4942 1.4981 
1.4352 1.4319 1.4319 1.4356 

Figure 2-5. Example SDS 
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The data identifiers stored in the NDG for this SDS are shown below, along with the information 
pointed to by the data identifiers. In this list we ignore the actual format of the data identifiers, 
and concentrate instead on the information contained that they point to. Note also that the Ref, 
Offset, and Length fields for each DD are not shown. 

Table 2-9. Data Objects for the SDS shown in Figure 2-4 
Tag Name Value(s) Comments 

Data Dim1 Dim2 
DFTAG_DIL 'Neutron Star Accretion Simulation' Title for SDS Array 
DFTAG_SDD 2 Dimensions SD Dimension record 

4 10 Size of dimensions 
Float32 Float32 Float32 Number types 

DFTAG_SDS 1.67…1.70 30.75…32.11 SD Numerical scales 
DFTAG_SDL 'Density' 'Time' 'Radius' SD Labels 
DFTAG_SDU 'gm/cm^3' 'sec' 'km' SD Units 
DFTAG_SDF F7.4 F5.2 F5.2 SD Numerical Formats 
DFTAG_SD '0.5872,0.5872,……,1.4319,1.4352' Actual data 

The DFTAG_SDD tag says that the data set consists of two dimensions, sized four and ten 
elements, respectively, where the data and both scales consist of floating-point numbers. The 
numerical scales are set by DFTAG_SDS, with a four-element array for the first dimension and a 
ten-element array for the second dimension. As mentioned before, all of these data identifier 
entries are listed both in the main DD list directory, and in the NDG that defines the SDS. 

2.3.5.2 The ‘SD’ Interface 

The basic ideas behind the SD version of the SDS are the same as those in the DFSD SDS, but 
some changes were needed in order to achieve the major design goal: compatibility with 
netCDF. This driver gave rise to three distinct differences between the two implementations. 

First, rather than using a specialized tag such as DFTAG_NDG to group its elements, the SD 
interface uses a general purpose Vgroup. Using a Vgroup allows for more flexibility in the 
organization of the SDS without a complete redesign. Second, the handling of dimensions has 
changed considerably, in that they can now have their own attributes. Third, the SD interface 
allows the use of user-defined attributes, not just the ones that are pre-defined. 

Below is a list of the different styles of SDS, in order of their adoption into the HDF library. 

Scientific Data Groups (SDG)—Originally, all SDSs were written in SDG groups. An SDG 
group (tag value = DFTAG_SDG) can contain any of the tags that are currently used for NDGs. The 
only difference between SDGs and NDGs is that SDGs only support 32-bit floating point arrays, 
whereas NDGs can support several types of floating point and integer number types. 
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SDGs are considered obsolete, although the HDF libraries will write out both an SDG and  a 
NDG for the same array, if that array is made up of 32-bit floating point values. Application 
programs that are linked with versions of HDF before 3.2 will only recognize SDGs as SDSs. 
We will not discuss SDGs further, since they will not be used in ECS. 

Numeric Data Groups (NDGs)—What we have just described in detail is the disk format for 
NDG groups (tag value = DFTAG_NDG). The NDG tag was new with HDF version 3.2. 
Application programs linked with version 3.2 of HDF will recognize SDGs and NDGs as SDSs. 
They are referred to in the latest documentation (3.3) as the “Old Style” HDF subroutines that 
deal solely with NDGs and SDGs are prefixed with “DFSD”. 

Multifile SDSs—The recommended interface for SDSs in the current version of HDF (4.1) is 
known as the “Multifile SDS” interface, or the ‘SD’ interface (after the prefix of the subroutine 
calls). The Multifile SDS interface defines a set of conventions and a set of library subroutines 
that uses Vgroups, Vdatas, and many of the parts of the NDG to create structures that are 
compatible with netCDF data structures. 

The package is called Multifile SDS because the new subroutines allow several HDF files to 
remain open simultaneously, something not possible with the earlier libraries. Another 
significant advantage of the interface is the ability to assign arbitrary attributes to SDSs. In the 
documentation they are also referred to as “New Style” SDSs, or (confusingly) just SDSs. The 
multifile interface will recognize all older forms of the SDS. The Multifile SDS interface is 
used exclusively for EOS data. 

2.3.6 HDF Vdatas 

HDF also supports the storage of tables that are organized as named columns known as Vdatas. 
Storage of a Vdata table requires the use of two tags: DFTAG_VH for defining and naming the 
columns of values; and DFTAG_VS for pointing to the actual Vdata data itself. There is no explicit 
grouping needed for Vdatas, although they can be included in a Vgroup (and usually are). 

For example, consider the table of values shown below: 

Table 2-10. Example Table of Values 
ID. No Flux Name 

1 .34 CygX1 
2 -89.43 HerX1 
3 0.0023 CygX3 
4 1.115 Vela 

2

The tags needed to define this table as a Vdata data object are shown below. Again, we focus on 
the information pointed to by the tags and ignore the actual binary formats. In particular, we 
have assigned names to the various fields defined in the data record pointed to by DFTAG_VH. 
These field names are also used in the HDF documentation. 
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Table 2-11. Vdata tags for dataset shown in Table 2-10 
Tag Name Field Name Values Comments 

Col1 Col2 Col3 
DFTAG_VH <nvert> 4 Number of records 

<isize> 11 Row width in bytes 
<nfields> 3 Number of fields 
<type> int16 float32 char[5] Field number types 
<isize> 2 4 5 Field size in bytes 
<offset> 0 2 6 Byte offset of field 
<fldnmlen> 5 4 4 Length of field Name 
<fldnm> 'ID.No' 'Flux' 'Name' Field names 
<namelen> 19 Length of Vdata name 
<name> 'Vdata Example Table' Vdata name 

DFTAG_VS 1,2.34,'CygX1',…,'Vela' Actual data 

In this example, the information in the DFTAG_VH data element defines a Vdata with three fields 
(columns) and four Vdata records (rows). The values in these fields are defined as short (2-byte) 
integer, 4-byte floating-point, and five-character ASCII text, respectively. In addition, each field 
has an ASCII text name. Note, by the way, how the entire Vdata definition can be named 
(<name>). This is unusual, in that most HDF data objects require a separate tag (DFTAG_DIL) to 
get a name. 

The actual data pointed to by the DFTAG_VS tag is stored, packed as tightly as possible. The total 
width of every record is therefore 2 + 4 + 5 = 11 bytes. The four records of this table take up 11 
∞ 4 = 44 bytes. This packing is shown below. Here the DFTAG_VS record associates itself with a 
DFTAG_VH record by having the same Ref number. This is the only case where the HDF libraries 
use the Ref numbers explicitly to associate two data elements. 

Table 2-12. Disk layout of Vdata described in Table 2-11 

Record #0 
Record #1 
Record #2 
Record #3 

2.3.7 HDF Extended Tags 

The organizational features of HDF are so powerful that it is usually possible to store a complete 
data product granule in a single HDF file. There are, however, a couple of problems with very 
large single file data products. 

Byte Position 

1 2 3 4 5 6 7 8 9 10 11 
Integer Floating Point Text String 

1 2.34 C y g X 1 
2 -89.43 H e r X 1 
3 0.0023 C y g X 3 
4 1.115 V e l a 
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The first problem, which we have already mentioned, is that HDF files are limited to 2 
Gigabytes in size. The second problem is that HDF data elements were not initially designed to 
be appendable. Normally, data elements are required to be in contiguous storage and they are 
packed right next to each other. Therefore, to make a data element bigger, it needs to be copied 
to the end of the file where there is room to grow, leaving a gap in the file. 

To get around these limitations, NCSA has defined extended tags. An extended tag allows a data 
element to be spread among multiple locations in the HDF file or even in a completely separate 
file. A data element corresponding to any NCSA defined tag value can be converted to an 
extended tag, although this functionality is currently only supplied for SDSs and Vdatas. 

An extended tag DD does not point directly to the data, as the normal tags do. It instead points to 
a data object defining where the data is and how it is stored. This data object may point to the 
beginning of a linked list of data blocks that contain the entire data record. This way, a data 
record can be lengthened just by adding an additional data block; the entire HDF file does not 
need to be rewritten. 

Alternatively, the extended tag record could define the data element as being stored in an 
external element in another disk file. This feature (which is also found in CDF), allows a user to 
get around the two-gigabyte limitation on total file size. It may also make a large HDF ‘file’ 
easier to handle. Several 100-megabyte files are sometimes easier to handle than a single 
gigabyte file. 

2.4 HDF Examples 

The following sections contain sample C code for writing and reading a selection of basic HDF 
data objects. For now, we have kept to some very simple code that, for the most part, has been 
copied from NCSA’s HDF documentation. 

2.4.1 8-bit Raster Image Output 

The C program below writes an 8-bit raster image to the file “example.hdf”. This program takes 
no input. 

#include "hdf.h"

#define WIDTH 5

#define HEIGHT 6


main(int argc, char *argv[])

{


/* Initialize the image array */

static uint8 raster_data[HEIGHT][WIDTH] =


{ 1, 2, 3, 4, 5,

6, 7, 8, 9, 10,


11, 12, 13, 14, 15,

16, 17, 18, 19, 20,

21, 22, 23, 24, 25,

26, 27, 28, 29, 30 };


/* Write the 8-bit raster image to the file */

DFR8addimage("example.hdf", raster_data, WIDTH, HEIGHT, 0);


}
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2.4.2 8-bit Raster Image with Palette Output 

The program below writes an 8-bit raster image and its associated palette to the file 
“example.hdf”. This program takes no input. 

#include "hdf.h"

#define WIDTH 5

#define HEIGHT 6


main(int argc, char *argv[])

{


uint8 palette_data[768];

intn i;


/* Initialize the image array */

static uint8 raster_data[HEIGHT][WIDTH] =


{ 1, 2, 3, 4, 5,

6, 7, 8, 9, 10,


11, 12, 13, 14, 15,

16, 17, 18, 19, 20,

21, 22, 23, 24, 25,

26, 27, 28, 29, 30 };


/* Initialize the palette to standard linear grayscale */

for (i=0; i<256; i++) {

palette_data[i*3] = i;

palette_data[i*3+1] = i;

palette_data[i*3+2] = i;

}


/* Associate the palette with the image */

DFR8setpalette(palette_data);


/* Write the 8-bit raster image to the file */

DFR8addimage("example.hdf", raster_data, WIDTH, HEIGHT, 0);


}


2.4.3 8-bit Raster Image with Palette Input 

The program below reads an 8-bit raster image and its associated palette from the file 
“example.hdf” created by the program in the section above. This program produces no output. 

#include "hdf.h"

#define WIDTH 5

#define HEIGHT 6


main(int argc, char *argv[])

{


uint8 raster_data[HEIGHT][WIDTH], palette_data[768];

intn haspal;

int32 width, height;


/* Get dimensions and check for palette */

DFR8getdims("example.hdf", &width, &height, &haspal);


/* Read the 8-bit raster image and palette from the file */

if ((width == WIDTH) && (height == HEIGHT) && (haspal == 1))


DFR8getimage("example.hdf", (uint8 *) raster_data, width,

height, palette_data);


}

}
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2.4.6 Scientific Data Set Output 

The programs in this section make use of the new SDS interface introduced with HDF 3.3. We 
recommend that people use this interface rather than the older interface. The program below 
writes a Scientific Data Set to the file “example.hdf”. This program takes no input. 

#include "hdf.h"

#include "mfhdf.h"

#define LENGTH 3

#define HEIGHT 2

#define WIDTH 5

main(int argc, char *argv[])

{


/* Initialize the image array */

static float64 scien_data[LENGTH][HEIGHT][WIDTH] =


{ 1., 2., 3., 4., 5.,

6., 7., 8., 9., 10.,


11., 12., 13., 14., 15.,

16., 17., 18., 19., 20.,

21., 22., 23., 24., 25.,

26., 27., 28., 29., 30. };


int32 dims[3] = {LENGTH, HEIGHT, WIDTH};

int16 scale0[LENGTH] = {2, 4, 6};

int32 scale1[HEIGHT] = {1234567, 2345678};

float32 scale2[WIDTH] = {2.2, 4.4, 6.6, 8.8, 11.0};

float64 avg = 15.0;

int32 start[3] = {0, 0, 0};

int32 fid, sdid, dimid0, dimid1, dimid2;


/* Open file and initialize SD interface */

fid = SDstart("example.hdf", DFACC_CREATE);


/* Create named data set */

sdid = SDcreate(fid, "Sample Data Set", DFNT_FLOAT64, 3, dims);


/* Set up dimension zero */

dimid0 = SDgetdimid(sdid, 0);

SDsetdimname(dimid0, "Dimension 0");

SDsetdimstrs(dimid0, "The zeroth dimension", "mm", "2d");

SDsetdimscale(dimid0, LENGTH, DFNT_INT16, (VOIDP)scale0);


/* Set up dimension one */

dimid1 = SDgetdimid(sdid, 1);

SDsetdimname(dimid1, "Dimension 1");

SDsetdimstrs(dimid1, "The first dimension", "cm", "8d");

SDsetdimscale(dimid1, HEIGHT, DFNT_INT32, (VOIDP)scale1);


/* Set up dimension two */

dimid2 = SDgetdimid(sdid, 2);

SDsetdimname(dimid2, "Dimension 2");

SDsetdimstrs(dimid2, "The second dimension", "m", "4.1f");

SDsetdimscale(dimid2, WIDTH, DFNT_FLOAT32, (VOIDP)scale2);


/* Write the data array to the data set */

SDwritedata(sdid, start, NULL, dims, (char *)scien_data);


/* Add one local attribute */

SDsetattr(sdid, "Average", DFNT_FLOAT64, 1, (char *)&avg);


/* Add one global attribute */

SDsetattr(fid, "Date", DFNT_CHAR8, 9, "10/29/93");


/* Close the data set, file, and interface */

SDendaccess(sdid);

SDend(fid);


}
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2.4.7 Scientific Data Set Input 

The program below reads a Scientific Data Set from the file 
program in the section above. This program produces no output. 

#include <string.h>

#include "hdf.h"

#include "mfhdf.h"


#define MAXRANK 3

#define LENGTH 3

#define HEIGHT 2

#define WIDTH 5

#define DATESIZE 9


main(int argc, char *argv[])

{


float64 scien_data[LENGTH][HEIGHT][WIDTH];

int32 dims[MAXRANK];

int16 scale0[LENGTH];

int32 scale1[HEIGHT];

float32 scale2[WIDTH];

float64 avg;

int32 start[MAXRANK] = {0, 0, 0};

int32 fid, sdid, dimid;


"example.hdf" created by the 

int32 i, index, rank, nattrs, ndatasets, nglobals;

int32 nt, count, status;

intn size;

char name[80], date[80];


/* Open file and initialize SD interface */

fid = SDstart("example.hdf", DFACC_RDONLY);

status = SDfileinfo(fid, &ndatasets, &nglobals);


/* Read global attribute */

if (nglobals == 1) {


status = SDattrinfo(fid, 0, name, &nt, &size);

if ((strcmp(name, "Date")) && (nt == DFNT_CHAR8) &&


(size == DATESIZE))

SDreadattr(fid, 0, date);


}


/* Open first data set */

index = SDnametoindex(fid, "Sample Data Set");

sdid = SDselect(fid, index);

SDgetinfo(sdid, name, &rank, dims, &nt, &nattrs);


/* Read in data if everything looks okay */

if ((rank == MAXRANK) && (dims[0] == LENGTH) && (dims[1] == HEIGHT)

&& (dims[2] == WIDTH) && (nt == DFNT_FLOAT64))

SDreaddata(sdid, start, NULL, dims, scien_data);


/* Read local attribute */

status = SDattrinfo(sdid, 0, name, &nt, &size);

if ((strcmp(name, "Average")) && (nt == DFNT_FLOAT64) &&


(size == 1))

SDreadattr(sdid, 0, &avg);


/* Read dimensions */

dimid = SDgetdimid(sdid, 0);

SDdiminfo(dimid, name, &count, &nt, &nattrs);

if ((nt == DFNT_INT16) && (count == LENGTH))


SDgetdimscale(dimid, scale0);


dimid = SDgetdimid(sdid, 1);

SDdiminfo(dimid, name, &count, &nt, &nattrs);

if ((nt == DFNT_INT32) && (count == HEIGHT))
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 SDgetdimscale(dimid, scale1);


dimid = SDgetdimid(sdid, 2);

SDdiminfo(dimid, name, &count, &nt, &nattrs);

if ((nt == DFNT_FLOAT32) && (count == WIDTH))


SDgetdimscale(dimid, scale2);


/* Close the data set, file, and interface */

SDendaccess(sdid);

SDend(fid);


}
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3. HDF-EOS V2 

3.1 Introduction 

HDF as introduced in Section 2, has been extended by the ECS Project to focus conventions for 
writing EOS data products. These extensions are called HDF-EOS.  In this Section, we present a 
brief introduction to the file format of HDF-EOS. A detailed discussion, as well as an 
operational description of HDF-EOS can be found in HDF-EOS Users Guide for the ECS 
Project (Volume 1 and Volume 2). 

3.2 HDF and HDF-EOS File Formats 

3.2.1 Overview 

Most of the NCSA defined datatypes map well to EOS datatypes. Examples include raster 
images, multi-dimensional arrays, and text blocks. There are other EOS datatypes, however, that 
do not map directly to NCSA datatypes, particularly in the case of geolocated datatypes. 
Examples include projected grids, satellite swaths, and field campaign or point data. 

An HDF file consists of a directory, and records pointed to by that directory. Each directory 
entry consists of fields for the record type (TAG), a unique (for each TAG) ID number (REF), 
and a location and size of the record pointed to. All locations in the HDF file are in byte 
locations from the beginning of the file. All record sizes are also specified in bytes. 

Supported record types include images, multidimensional arrays, text and tables (known in HDF 
as Vdatas). One record type, known as Vgroup, lets the user group a series of records into a 
larger structure, similar to disk directories. 

To bridge the gap between the needs of EOS data products and the capabilities of HDF, the ECS 
Project has developed extensions of HDF, which standardize the conventions for writing HDF 
files, and are called HDF-EOS. These extensions facilitate the creation of Grid, Point and Swath 
data structures.  These structures are composed of native HDF objects and are therefore objects 
themselves. In the text below, Grid, Point and Swath structures are described in more detail. 

The software interface for the HDF-EOS implementation is very similar to the HDF interface. 
The HDF-EOS interface is used to access the Grid, Point and Swath data structures created by 
the HDF-EOS library. The plain HDF interface is not used to access Grid, Point and Swath 
structures.  See HDF-EOS Users Guide for the ECS Project and references. 

The Point interface is designed to support data that has associated geolocation information, but 
is not organized in any well-defined spatial or temporal way. The Swath interface is tailored to 
support time-ordered data such as satellite swaths (which consist of a time-ordered series of 
scanlines), or profilers (which consist of a time-ordered series of profiles). The Grid interface is 
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designed to support data that has been organized in a rectilinear array, based on a well defined 
and explicitly supported projection. 

3.2.2 Structure of an HDF-EOS File 

An HDF-EOS file is any valid HDF file (i.e., any file created by the NCSA HDF library), that 
contains a family of global attributes called “coremetadata.X”, where “.X” is a sequence number 
beginning at 0 and running as high as 9.  Optional data objects which may appear in an HDF-
EOS file include, another family of global attributes called “archivemetadata.X” and any number 
of Point, Swath, and/or Grid data structures. The existence of Point, Swath, or Grid structures in 
an HDF-EOS file implies the existence of another family of global attributes called 
“StructMetadata.X”. In Section 4, we give an additional overview of ECS metadata, it's role in 
ECS and also to metadata access and creation.  The scope of this Primer however, is a discussion 
of data format issues for ECS standard data products.  The reader is referred to The Science Data 
Processing (SDP) Toolkit Users Guide for the ECS Project, and other documents in the 
Reference Section for details of the purpose of and usage of ECS metadata.  Creation of ECS 
metadata requires use of the ECS Science Data Processing (SDP) Toolkit (see the SDP Toolkit 
Users Guide for the ECS Project).  (http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html) 

Core Metadata 

Core metadata represent information which is used to populate searchable database tables within 
the ECS archives. Data users use this information to locate particular HDF-EOS data granules. 
These metadata, which are defined in Release B-1 Earth Sciences Data Model, are also copied in 
the “coremetadata.X” (X= 0,...,n) family of global attributes within an HDF-EOS file. The 
syntax of these metadata is compliant with the Object Description Language (ODL). Tools for 
formatting, accessing and writing core metadata are provided in the SDP Toolkit. 

Archive Metadata 

Archive metadata represent information that, by definition, will not be searchable. It contains 
whatever information the file creator considers useful to be in the file, but which will not be 
directly accessible by ECS databases. That is ECS will not perform search and order or other 
services based on Archive metadata. These services are performed on Core metadata. Archive 
metadata are also accessed via SDP Toolkit calls and are written in ODL syntax into the 
“archivemetadata.X”, (X=0,...,n) family of global attributes. (see SDP Toolkit Users Guide for 
the ECS Project). 

Structural Metadata 

Structural metadata describe the contents and structure of an HDF-EOS file. That is, these 
metadata describe how geolocation, temporal, projection information are to be associated with 
the data itself.  Structural metadata are present in the file only if the HDF-EOS library has been 
invoked to create a Grid, Point, or Swath structure. These metadata are stored in the 
“StructMetadata.X” family of global attributes and are created and maintained by the HDF-EOS 
library. They are also stored in ODL format. These metadata are not intended to be directly 
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accessed by data producers or users. Therefore, all access to these metadata should be via 
appropriate function calls in the HDF-EOS library. 

Point Structure 

Point structures are implemented in HDF-EOS files as a hierarchy of Vgroups containing several 
Vdatas, i.e. tables. All Vgroups and Vdatas that are part of any Point structure carry the class 
“POINT”. The Point structure can be implemented in a hierarchical set of 'levels'. For example, 
data location, data parameters at each location and parameter attributes, represent three levels in a 
hierarchy. Each level of data within a Point structure is implemented as a single Vdata, with each 
data field being a named field in the Vdata. 

The following limitations apply to Point structures and should be kept in mind by EOSView users: 

•	 The reserved field names for special purpose geolocation fields are “Longitude”, “Latitude”, 
“Colatitude”, and “Time” (case sensitive). These fields are subject to the following 
requirements: 

Field Name Data Type Format 

Longitude float32 or float64 Decimal degrees on the range [-180.0, 180.0) 

Latitude float32 or float64 Decimal degrees on the range [-90.0, 90.0] 

Colatitude float32 or float64 Decimal degrees on the range [0.0, 180.0] 

Time float64 TAI93 (seconds until(-)/since(+) midnight, 1/1/93) 

• Fields may only be one-dimensional.


• Up to 5 levels may exist in a Point structure.


• Field names may be up to 64 characters in length.


• Any character can be used with the exception of, ",", ";", " and "/".


• Names are case sensitive.


• Names must be unique within a particular Point structure.


Swath Structure 

Swath structures are implemented as a hierarchy of Vgroups containing a number of Vdatas 
and/or SDSs, i.e. tables and multi-dimensional arrays.  All Vgroups and Vdatas that are part of 
any Swath structure carry the class “SWATH”.  Each one-dimensional field is implemented as a 
named field within its own Vdata.  One-dimensional fields that are the same length, are merged 
into “communal” Vdatas, with each data field occupying one field in the Vdata. 

Each multi-dimensional field is implemented as an SDS. Three-dimensional fields which share the 
same dimensionality, dimension sizes, and data type and which are specifically allowed by the 
calling program are merged into communal SDSs with three dimensions. Two-dimensional arrays 
are merged as if they were three-dimensional arrays with a first dimension of size 1. No merging is 
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performed on fields with more than three dimensions, on fields with an unlimited dimension, or on 
compressed fields. 

The following limitations apply to Swath structures: 

•• The reserved field names for special purpose geolocation fields are “Longitude”, “Latitude”, 
“Colatitude”, and “Time” (case sensitive). These fields are subject to the following 
requirements: 

Field Name Data Type Format 

Longitude float32 or float64 Decimal degrees on the range [-180.0, 180.0) 

Latitude float32 or float64 Decimal degrees on the range [-90.0, 90.0] 

Colatitude float32 or float64 Decimal degrees on the range [0.0, 180.0] 

Time float64 TAI93 (seconds until(-)/since(+) midnight, 1/1/93) 

These fields may be one- or two-dimensional. 

• Non-reserved fields may have up to 8 dimensions. 

• An “unlimited” dimension must be the first dimension (in C-order). 

•	 For all multi-dimensional fields in scan- or profile-oriented Swaths, the dimension 
representing the “along track” dimension must precede the dimension representing the scan 
or profile dimension(s). 

•	 Compression is selectable at the field level within a Swath. All HDF-supported compression 
methods are available through the HDF-EOS library. Specifying compression on a field 
prevents merging.  The compression method is stored within the file. Subsequent use of the 
library will un-compress the file. 

• Field names may be up to 64 characters in length. 

• Any character can be used with the exception of, ",", ";", " and "/". 

• Names are case sensitive. 

• Names must be unique within a particular Swath structure. 

Grid Structure 

Grid structures are implemented as a hierarchy of Vgroups containing several SDSs. All Vgroups 
that are part of any Grid structure carry the class “GRID”. Each data field within a Grid structure 
is implemented as a single SDS. Merging is done the same way for Grid data fields as for multi
dimensional Swath data fields. 

The following limitations apply to Grid structures: 

• Fields may have from 2 to 8 dimensions. 
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•	 Compression is selectable at the field level within a Grid. All HDF-supported compression 
methods are available through the HDF-EOS library. Specifying compression on a field 
prevents merging. The compression method is stored within the file. Subsequent use of the 
library will un-compress the file. 

• Field names may be up to 64 characters in length. 

• Any character can be used with the exception of, ",", ";", " and "/". 

• Names are case sensitive. 

• Names must be unique within a particular Point structure. 

Combinations 

An HDF-EOS file can contain any number of Grid, Point and Swath data structures, up to a two 
Gigabyte lime for 32-bit addressing in HDF 4.  An HDF-EOS file can also contain plain HDF 
objects for special purposes. HDF objects must be accessed by the HDF library and not by HDF-
EOS extensions. A user should note however, that inclusion of HDF objects will require more 
knowledge of file contents on the part of an applications developer or data user. A user should 
also note that HDF is a directory structure and that a file containing 1000's of objects could 
cause program execution slow-downs. 

3.3 HDF-EOS Library Functionality 

The HDF-EOS libraries provide the following basic functionality for Point, Swath and Grid 
Structures: 

•	 Access routines  which initialize and terminate access to the data sets (including opening 
and closing files). 

• Definition routines which allow the user to set key features of structures within data sets. 

• Basic I/O routines which read and write data and structural metadata to data sets. 

•	 Inquiry routines which return information about data structures contained within data 
sets. 

•	 Subset routines which allow reading of data from a specified geographic, temporal or 
vertical regions. 

Details of the user interface to the HDF-EOS libraries are presented in the HDF-EOS Library 
Users’ Guide for the ECS Project, Volumes 1 and 2, 170-TP-510-001 and 170-TP-510-002, 
respectively. 

In the following Sections, we give a synopsis of the Grid, Point and Swath structures and 
software interfaces, taken from the Users Guides. 
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3.3.1 Point Data Interface 

3.3.1.1 Introduction 

A Point Data set is made up of a series of data records taken at [possibly] irregular time intervals 
and at scattered geographic locations. Point Data is the most loosely organized form of geo
located data supported by HDF-EOS. Simply put, each data record consists of a set of one or 
more data values representing, in some sense, the state of a point in time and/or space. 

Figure 3-1 shows an example of a simple point data set. In this example, each star on the map 
represents a reporting station. Each record in the data table contains the location of the point on 
the Earth and the measurements of the temperature and dew point at that location. This sort of 
point data set might represent a snapshot in time of a network of stationary weather reporting 
facilities. 

Lat Lon Temp(C) Dewpt(C) 

61.12 -149.48 15.00 5.00 
45.31 -122.41 17.00 5.00 
38.50 -77.00 24.00 7.00 
38.39 -90.15 27.00 11.00 
30.00 -90.05 22.00 7.00 
37.45 -122.26 25.00 10.00 
18.00 -76.45 27.00 4.00 
43.40 -79.23 30.00 14.00 
34.03 -118.14 25.00 4.00 
32.45 -96.48 32.00 8.00 
33.30 -112.00 30.00 10.00 
42.15 -71.07 28.00 7.00 
35.05 -106.40 30.00 9.00 
34.12 -77.56 28.00 9.00 
46.32 -87.25 30.00 8.00 
47.36 -122.20 32.00 15.00 
39.44 -104.59 31.00 16.00 
21.25 -78.00 28.00 7.00 
44.58 -93.15 32.00 13.00 
41.49 -87.37 28.00 9.00 
25.45 -80.11 19.00 3.00 

Figure 3-1. A Simple Point Data Example 

A more realistic example might record the changes in the parameters over time by including 
multiple values of the parameters for each location. In this case, the identity and location of the 
reporting stations would remain constant, while the values of the measured parameters would 
vary. This sort of set up naturally leads to a hierarchical table arrangement where a second table 
is used to record the static information about each reporting station. This removes the redundant 
information that would be required by a single “flat” table and acts as an index for quick access 
to the main data table. Such an arrangement is depicted in Figure 3-2. 
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 Station Lat Lon 	 Time Temp(C)

0800 -3
Chicago 

Los Angeles 
Washington 
Miami 

-87.37 41.49 
34.03 -118.14 

-77.00 38.50 
-80.11 25.45 

0900 -2 

1000 -1 

0800 20 

0900 21 

1000 22 

1100 24 

1000 6 

1100 8 

1200 9 

1300 11 

1400 12 

0600 15 

0700 16


Figure 3-2. Recording Points Over Time 

An even more complex point data set may represent data taken at various times aboard a moving 
ship. Here, the only thing that remains constant is the identity of the reporting ship. Its location 
varies with each data reading and is therefore treated similarly to the data. Although this 
example seems more complicated than the static example cited above, its implementation is 
nearly identical. Figure 3-3 shows the tables resulting from this example. Note that the station 
location information has been moved from the static table to the data table. 

Lat Lon Temp(C) Salinity(P

34.12 -74.56 18 146


Ship ID 
SS Botany Bay 
SS Dinghy 

SS Botany Bay 

SS Dinghy 

33.24 -74.62 18 158

32.45 -75.65 19 151

32.03 -76.02 19 160

30.94 -76.48 20 162

30.04 -76.89 20 165

29.88 -76.94 21 159

25.51 -84.67 26 167

25.97 -85.06 26 173

26.22 -85.65 25 168

26.53 -86.14 26 162

26.58 -86.74 27 144

26.62 -87.45 27 156

26.87 -87.97 25 160

27.09 -88.68 25 166


Figure 3-3. Point Data from a Moving Platform 
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In fact, the hierarchical arrangement of the tables in the last two examples can be expanded upon 
to include up to five indexing levels. A normal data access on a multi-level hierarchical point 
data set would involve starting at the top (first) level and following successive pointers down the 
structure until the desired information is found. As each level is traversed, more and more 
specific information is gained about the data. 

In rare cases, it may be advantageous to access a point data set from the bottom (lowest level of 
the hierarchy). The point data model implemented in HDF-EOS provides for backward (or 
upward) pointers, which facilitate bottom-up access. That is, from the lowest level to the highest. 

3.3.1.2 Applicability 

The Point data model is very flexible and can be used for data at almost any level of processing. 
It is expected that point structure will be used for data for which there is no spatial or temporal 
organization, although lack of those characteristics do not preclude the use of a point structure. 
For example, profile data which is accumulated in sparsely located spatial averages may be most 
useful in a point structure. 

3.3.1.3 The Point Data Interface 

The PT interface consists of routines for storing, retrieving, and manipulating data in point data 
sets. 

PT API Routines 

All C routine names in the point data interface have the prefix “PT” and the equivalent 
FORTRAN routine names are prefixed by “pt.” The PT routines are classified into the following 
categories: 

•	 Access routines initialize and terminate access to the PT interface and point data sets 
(including opening and closing files). 

• Definition routines allow the user to set key features of a point data set. 

• Basic I/O routines read and write data and metadata to a point data set. 

• Index I/O routines read and write information which links two tables in a point data set. 

• Inquiry routines return information about data contained in a point data set. 

• Subset routines allow reading of data from a specified geographic region. 

The PT function calls are listed and are described in detail in the HDF-EOS Users Guides 

File Identifiers 

As with all HDF-EOS interfaces, file identifiers in the PT interface are 32-bit values, each 
uniquely identifying one open data file. They are not interchangeable with other file identifiers 
created with other interfaces. 
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Point Identifiers 

Before a point data set is accessed, it is identified by a name which is assigned to it upon its 
creation. The name is used to obtain a point identifier. After a point data set has been opened for 
access, it is uniquely identified by its point identifier. 

3.3.1.4 Programming Model 

The programming model for accessing a point data set through the PT interface is as follows: 

1. Open the file and initialize the PT interface by obtaining a file id from a file name. 

2. Open OR create a point data set by obtaining a point id from a point name. 

3. Perform desired operations on the data set. 

4. Close the point data set by disposing of the point id. 

5. Terminate point access to the file by disposing of the file id. 

To access a single point data set that already exists in an HDF-EOS file, the calling program 
must contain the following sequence of C calls: 

file_id = PTopen(filename, access_mode); 
pt_id = PTattach(file_id, point_name); 
<Optional operations> 
status = PTdetach(pt_id); 
status = PTclose(file_id); 

To access several files at the same time, a calling program must obtain a separate id for each file 
to be opened. Similarly, to access more than one point data set, a calling program must obtain a 
separate point id for each data set. For example, to open two data sets stored in two files, a 
program would execute the following series of C function calls: 

file_id_1 = PTopen(filename_1, access_mode); 
pt_id_1 = PTattach(file_id_1, point_name_1); 
file_id_2 = PTopen(filename_2, access_mode); 
pt_id_2 = PTattach(file_id_2, point_name_2); 
<Optional operations> 
status = PTdetach(pt_id_1); 
status = PTclose(file_id_1); 
status = PTdetach(pt_id_2); 
status = PTclose(file_id_2); 

Because each file and point data set is assigned its own identifier, the order in which files and 
data sets are accessed is very flexible. However, it is very important that the calling program 
individually discard each identifier before terminating. Failure to do so can result in empty or, 
even worse, invalid files being produced. 

It is permissible to have any number of Point (Grid, Swath) objects in a single HDF EOS file. 
PTopen () must be called to open each object (structure).  It is o.k. to have more than one object 
open at a time. 
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3.3.2 Swath Interface 

3.3.2.1 Introduction 

The Swath concept for HDF-EOS is based on a typical satellite swath, where an instrument takes 
a series of scans perpendicular to the ground track of the satellite as it moves along that ground 
track. Figure 3-4 below shows this traditional view of a swath. 

Along Track 

Scan Lines 

Cross Track 

Satellite 

Figure 3.4. A Typical Satellite Swath: Scanning Instrument 

Another type of data that the Swath is equally well suited to arises from a sensor that measures a 
vertical profile, instead of scanning across the ground track. The resulting data resembles a 
standard Swath tipped up on its edge. Figure 3-5 shows how such a Swath might look. 

In fact, the two approaches shown in Figures 3-4 and 3-5 can be combined to manage a profiling 
instrument that scans across the ground track. The result would be a three dimensional array of 
measurements where two of the dimensions correspond to the standard scanning dimensions 
(along the ground track and across the ground track), and the third dimension represents a height 
above the Earth or a range from the sensor. The "horizontal" dimensions can be handled as 
normal geographic dimensions, while the third dimension can be handled as a special "vertical" 
dimension. 
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Figure 3-5.  A Swath Derived from a Profiling Instrument 

A standard Swath is made up of four primary parts: data fields, geolocation fields, dimensions, 
and dimension maps. An optional fifth part called an index can be added to support certain kinds 
of access to Swath data. Each of the parts of a Swath is described in detail in the following 
subsections. 

Data Fields 

Data fields are the main part of a Swath from a science perspective. Data fields usually contain 
the raw data (often as counts) taken by the sensor or parameters derived from that data on a 
value-for-value basis. All the other parts of the Swath exist to provide information about the data 
fields or to support particular types of access to them. Data fields typically are two-dimensional 
arrays, but can have as few as one dimension or as many as eight, in the current library 
implementation. They can have any valid C data type. 
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Geolocation Fields 

Geolocation fields allow the Swath to be accurately tied to particular points on the Earth’s 
surface. To do this, the Swath interface requires the presence of at least a time field (“Time”) or 
a latitude/longitude field pair (“Latitude”1 and “Longitude”). Geolocation fields must be either 
one- or two-dimensional and can have any data type. A latitude/langitude pair is generally 
referred to the center of pixels defined in Data Fields. The values are generally in geographic 
coordinates. 

Dimensions 

Dimensions define the axes of the data and geolocation fields by giving them names and sizes. In 
using the library, dimensions must be defined before they can be used to describe data or 
geolocation fields. 

Every axis of every data or geolocation field, then, must have a dimension associated with it. 
However, there is no requirement that they all be unique. In other words, different data and 
geolocation fields may share the same named dimension. In fact, sharing dimension names 
allows the Swath interface to make some assumptions about the data and geolocation fields 
involved which can reduce the complexity of the file and simplify the program creating or 
reading the file. 

Dimension Maps 

Dimension maps are the glue that holds the Swath together. They define the relationship 
between data fields and geolocation fields by defining, one-by-one, the relationship of each 
dimension of each geolocation field with the corresponding dimension in each data field. In 
cases where a data field and a geolocation field share a named dimension, no explicit dimension 
map is needed. In cases where a data field has more dimensions than the geolocation fields, the 
“extra” dimensions are left un-mapped. 

In many cases, the size of a geolocation dimension will be different from the size of the 
corresponding data dimension. To take care of such occurrences, there are two pieces of 
information that must be supplied when defining a dimension map: the offset and the increment. 
The offset tells how far along a data dimension you must travel to find the first point to have a 
corresponding entry along the geolocation dimension. The increment tells how many points to 
travel along the data dimension before the next point is found for which there is a corresponding 
entry along the geolocation dimension. Figure 3-6 depicts a dimension map. 

1 “Colatitude” may be substituted for “Latitude.” 
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Geolocation Dimension 
Mapping 
Offset: 1

Increment: 2 

1 2  3 4 5 6 7  8 9  0 

0 1 2  3 4 5 6 7  8 9  10111213141516171819 

Data Dimension 

Figure 3-6.  A “Normal” Dimension Map 

The “data skipping” method described above works quite well if there are fewer regularly spaced 
geolocation points than data points along a particular pair of mapped dimensions of a Swath. It is 
conceivable, however, that the reverse is true – that there are more regularly spaced geolocation 
points than data points. In that event, both the offset and increment should be expressed as 
negative values to indicate the reversed relationship. The result is shown in Figure 3-7. Note that 
in the reversed relationship, the offset and increment are applied to the geolocation dimension 
rather than the data dimension. 

Geolocation Dimension 
0 1 2  3 4 5 6 7 8 9 10111213141516171819 

Mapping 
Offset: -1

1 2 3 4 5 6 7 8 9  Increment: -2 
Data Dimension 

Figure 3-7. A “Backwards” Dimension Map 

Index 

The index was designed specifically for Landsat 7 data products. These products require 
geolocation information that does not repeat at regular intervals throughout the Swath. The index 
allows the Swath to be broken into unequal length scenes which can be individually geolocated. 

0 
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For this version of the HDF-EOS library, there is no particular content required for the index. It 
is quite likely that a later version of the library will impose content requirements on the index in 
an effort to standardize its use. 

3.3.2.2 Applicability 

The Swath data model is most useful for satellite [or similar] data at a low level of processing. 
The Swath model is best suited to data at EOS processing levels 1A, 1B, and 2. Swath structures 
are for data storage by MODIS, MISR, MOPITT, ASTER instrument teams on EOS-Terra and 
AIRS in EOS-AQUA. 

3.3.2.3 The Swath Data Interface 

The SW interface consists of routines for storing, retrieving, and manipulating data in swath data 
sets. 

SW API Routines 

All C routine names in the swath data interface have the prefix “SW” and the equivalent 
FORTRAN routine names are prefixed by “sw.” The SW routines are classified into the 
following categories: 

•	 Access routines initialize and terminate access to the SW interface and swath data sets 
(including opening and closing files). 

• Definition routines allow the user to set key features of a swath data set. 

• Basic I/O routines read and write data and metadata to a swath data set. 

• Inquiry routines return information about data contained in a swath data set. 

• Subset routines allow reading of data from a specified geographic region or by time 

The SW function calls are listed and are described in detail in the HDF-EOS Users Guides. 

File Identifiers 

As with all HDF-EOS interfaces, file identifiers in the SW interface are 32-bit values, each 
uniquely identifying one open data file. They are not interchangeable with other file identifiers 
created with other interfaces. 

Swath Identifiers 

Before a swath data set is accessed, it is identified by a name which is assigned to it upon its 
creation. The name is used to obtain a swath identifier. After a swath data set has been opened 
for access, it is uniquely identified by its swath identifier. 

3.3.2.4 Programming Model 

The programming model for accessing a swath data set through the SW interface is as follows: 
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1. Open the file and initialize the SW interface by obtaining a file id from a file name. 
2. Open OR create a swath data set by obtaining a swath id from a swath name. 
3. Perform desired operations on the data set. 
4. Close the swath data set by disposing of the swath id. 
5. Terminate swath access to the file by disposing of the file id. 

To access a single swath data set that already exists in an HDF-EOS file, the calling program 
must contain the following sequence of C calls: 

file_id = SWopen(filename, access_mode); 
sw_id = SWattach(file_id, swath_name); 
<Optional operations> 
status = SWdetach(sw_id); 
status = SWclose(file_id); 

To access several files at the same time, a calling program must obtain a separate id for each file 
to be opened. Similarly, to access more than one swath data set, a calling program must obtain a 
separate swath id for each data set. For example, to open two data sets stored in two files, a 
program would execute the following series of C function calls: 

file_id_1 = SWopen(filename_1, access_mode); 
sw_id_1 = SWattach(file_id_1, swath_name_1); 
file_id_2 = SWopen(filename_2, access_mode); 
sw_id_2 = SWattach(file_id_2, swath_name_2); 
<Optional operations> 
status = SWdetach(sw_id_1); 
status = SWclose(file_id_1); 
status = SWdetach(sw_id_2); 
status = SWclose(file_id_2); 

Because each file and swath data set is assigned its own identifier, the order in which files and 
data sets are accessed is very flexible. However, it is very important that the calling program 
individually discard each identifier before terminating.  Failure to do so can result in empty or, 
even worse, invalid files being produced. 

It is permissible to have any number of Swath (Grid, Point) objects in a single HDF EOS file. 
PTopen ()  must be called to open each object (structure).  It is o.k. to have more than one object 
open at a time. 

3.3.2.5 A Sample Usage of the Swath Interface 

In this section, we show a programming example of the usage of the HDF-EOS Swath interface. 
In a series of short programs, we will open a swath file, define dimensions, write data, extract 
information about the file and read data from the file. We will show the underlying HDF objects 
that are created by the interface. For additional detail, the reader is directed to the HDF-EOS 
Users Guides for the ECS Project. (http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html) 
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Swath Structure Creation: SetupSwath.c 

#include "mfhdf.h" 
/* 
* In this example we will (1) open an HDF file, (2) create the swath 
* interface within the file and (3) define the swath field dimensions. 
*/ 

main() 
{ 

intn status, i, j;

int32 swfid, SWid, indx[12]={0,1,3,6,7,8,11,12,14,24,32,39};


/*

* We first open the HDF swath file, "SwathFile.hdf". Because this file 
* does not already exist, we use the DFACC_CREATE access code in the 
* open statement. The SWopen routine returns the swath file id, swfid, 
* which is used to identify the file in subsequent routines in the 
* library. This call creates 1 Vgroup and 2 Vdatas in the HDF file. 
* The Vgroupis named from the first parameter in SWopen, the two Vdatas are 
* used by the HDF-EOS library. They are called StructMetadata.0 and 
* HDFEOSVersion. The 2 Vdatas are contained in the Vgroup as shown in 
* the following figure. 
*/ 

swfid = SWopen("SwathFile.hdf", DFACC_CREATE); 

/* 
* The first of these, SWcreate, creates the swath, "Swath1", within the 
* file designated by the file id, swfid. It returns the swath id, SWid, 
* which identifies the swath in subsequent routines. We will show how 
* to define, write and read field swaths in later programs. 
* This call creates 4 Vgroups in the HDF file. The main Vgroup called 
* Swath1 contains the 3 other Vgroups created by the HDF-EOS library. 
*They are called "Geolocation Fields", "Data Fields" and "Swath 
* Attributes". 
* These Vgroups are used by the HDF-EOS library to keep track of 
* the fields and other objects created by the user. 
*/ 

SWid = SWcreate(swfid, "Swath1"); 

/* 
* Typically, many fields within a swath share the same dimension. The 
* swath interface therefore provides a way of defining dimensions that 
* will then be used to define swath fields. A dimension is defined with 
* a name and a size and is connected to the particular swath through 
* the swath id. In this example, we define the geolocation track and 
* cross track dimensions with size 20 and 10 respectively and two 
* dimensions corresponding to these but with twice the resolution. 
* We also define a dimension corresponding to a number of spectral 
* bands. The dimension information for the file is contained in the 
* StructMetadata.0 Vdata. So this means no new HDF objects are created 
* for the dimensions. 
*/ 
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 status = SWdefdim(SWid, "GeoTrack", 20); 
status = SWdefdim(SWid, "GeoXtrack", 10); 
status = SWdefdim(SWid, "Res2tr", 40); 
status = SWdefdim(SWid, "Res2xtr", 20); 
status = SWdefdim(SWid, "Bands", 15); 
status = SWdefdim(SWid, "IndxTrack", 12); 

/* Define Unlimited Dimension */ 

status = SWdefdim(SWid, "Unlim", NC_UNLIMITED); 

/* 
* Once the dimensions are defined,the relationship (mapping)between the 
* geolocation dimensions, such as track and cross track, and the data 
* dimensions, must be established. This is done through the SWdefdimmap 
* routine. It takes as input the swath id, the names of the dimensions 

* designating the geolocation and data dimensions, respectively, and the 
* offset and increment defining the relation. 
* 
* In the first example we relate the "GeoTrack" and "Res2tr" dimensions 
* with an offset of 0 and an increment of 2. Thus the ith element of 
* "Geotrack" corresponds to the 2 * ith element of "Res2tr". 
* 
* In the second example, the ith element of "GeoXtrack" corresponds to 
* the 2 * ith + 1 element of "Res2xtr". 
* 
* Note that there is no relationship between the geolocation dimensions 
* and the "Bands" dimension. 
* 
* The information for the Regular dimension mapping is contained in the 
* StructMetadata.0 Vdata as character data. 

* For Index mapping relationships, that information is stored in a Vdata 
* that is contained in the "SwathFile.hdf" Vgroup created by the SWopen 
* call as integer data. This is done because the values change and 
* this relationship could contain a fairly large number of values. 
*/ 

status = SWdefdimmap(SWid, "GeoTrack", "Res2tr", 0, 2);

status = SWdefdimmap(SWid, "GeoXtrack", "Res2xtr", 1, 2);


/* Define Indexed Mapping */

status = SWdefidxmap(SWid, "IndxTrack", "Res2tr", indx);


/*

* We now close the swath interface with the SWdetach routine. This step 
* is necessary to properly store the swath information within the file. 
*/ 

status = SWdetach(SWid); 

/* 
* Finally, we close the swath file using the SWclose routine. This will 
* release the swath file handles established by SWopen. 
*/ 

status = SWclose(swfid); 

return; 
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} 

Figure 3-8. shows the HDF objects created by execution of the program SetupSwath.c. 

Swath1 

Geolocation 
Fields 

Data Fields 
Swath Attributes 

Indxmap 

Vgroup Vgroup Vgroup 

Vgroup 

Vdata 

SwathFile.hdf 

HDFEOSVersion StuctMetadata.0 

Vdata Vdata 

Figure 3-8. HDF Objects Created by Program: SetupSwath.c 

Swath Structure Creation: DefineFields.c 

#include "hdf.h" 
#include "HdfEosDef.h" 

/* 
* In this example we will (1) open the "SwathFile" HDF file, (2) attach to 
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 * the "Swath1" swath, and (3) define the swath fields. 
*/ 

main() 
{ 

intn status, i, j; 
int32 swfid, SWid; 

/* 
* We first open the HDF swath file, "SwathFile.hdf". Because this file 
* already exist and we wish to write to it, we use the DFACC_RDWR access 
* code in the open statement. The SWopen routine returns the swath file 
* id, swfid, which is used to identify the file in subsequent routines. 
*/ 

swfid = SWopen("SwathFile.hdf", DFACC_RDWR); 

/* 
* If the swath file cannot be found, SWopen will return -1 for the file 
* handle (swfid). We there check that this is not the case before 
* proceeding with the other routines. 
* 
* The SWattach routine returns handle to the existing swath "Swath1", 
* SWid. If the swath is not found, SWattach returns -1 for the handle. 
*/ 

if (swfid != -1) 
{ 

SWid = SWattach(swfid, "Swath1");

if (SWid != -1)

{


/* 
* We define seven fields. The first three, "Time", "Longitude" 
* and "Latitude" are geolocation fields and thus we use the 
* geolocation dimensions "GeoTrack" and "GeoXtrack"in the field 
* definitions. We also must specify the data type using the 
* standard HDF data type codes. In this example the geolocation 
* are 4-byte (32 bit) floating point numbers. 
* The next four fields are data fields. Note that either 
* geolocation or data dimensions can be used. If an error 
* occurs during the definition, such as a dimension that cannot 
* be found, then the return status will be set to -1. 
*/ 

/* This call creates a Vdata with 20 records located 
* in the "Geolocation Fields" Vgroup. 
*/ 
status = SWdefgeofield(SWid, "Time", "GeoTrack", 

DFNT_FLOAT64, HDFE_NOMERGE); 

/* The next two calls create a single SDS. This is 
* also located in the "Geolocation Fields" Vgroup. There is 
* only 1 SDS because the Merge Flag is turned on, so the library 
* will put the data for both fields into 1 object. 
*/ 
status = SWdefgeofield(SWid, "Longitude", "GeoTrack,GeoXtrack", 
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 DFNT_FLOAT32, HDFE_AUTOMERGE); 

status = SWdefgeofield(SWid, "Latitude", "GeoTrack,GeoXtrack", 
DFNT_FLOAT32, HDFE_AUTOMERGE); 

/* The next 3 calls create 3 SDSs. They are contained in the 
* Vgroup called "Data Fields". The Merge Flag is turned off 
* so this tells the HDF-EOS library to create separate objects 
* for each field. 
*/ 
status = SWdefdatafield(SWid, "Density", "GeoTrack", 

DFNT_FLOAT32, HDFE_NOMERGE); 

status = SWdefdatafield(SWid, "Temperature", "GeoTrack,GeoXtrack", 
DFNT_FLOAT32, HDFE_NOMERGE); 

status = SWdefdatafield(SWid, "Pressure", "Res2tr,Res2xtr", 
DFNT_FLOAT64, HDFE_NOMERGE); 

status = SWdefdatafield(SWid, "Spectra", "Bands,Res2tr,Res2xtr", 
DFNT_FLOAT64, HDFE_NOMERGE); 

/* Define Appendable Field */ 
/* ----------------------- */ 
/* This call creates a Vdata with a single value of -1. This 
* object is located in the "Data Fields" Vgroup. 
*/ 

status = SWdefdatafield(SWid, "Count", "Unlim", DFNT_INT16, 
HDFE_NOMERGE); 

} 
} 
status = SWdetach(SWid); 
status = SWclose(swfid); 

return; 
} 

Figure 3-9. shows the HDF objects created by the program DefineFields.c 
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Swath1 

Geolocation Data Fields 
Swath Attributes 

Indxmap 

VgroupVgroup Vgroup 

VdataTime Latitude 

Longitude 

Vdata SDS 

Density 

Temperature 

Pressure 

Spectra 

SDS 

SDS 

SDS 

SDS 
Count 

Vdata 

Figure 3-9. HDF Objects Created by Program: DefineField.c 

Writing Data to a Swath File: WriteFields.c 

#include "hdf.h" 

/* 
* In this example we will (1) open the "SwathFile" HDF file, (2) attach to 
* the "Swath1" swath, and (3) write data to the "Longitude", "Latitude", 
* and "Spectra" fields. 
*/ 

main() 
{ 

intn i, j, k, status, track, xtrack, start[3], count[3];

int32 swfid, SWid, attr[4]={3, 5, 7, 11};

float32 lng[10] = {0.0, 1.0, 2.0, 3.0, 4.0,

5.0, 6.0, 7.0, 8.0, 9.0}, lat[10];
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 /* Define longitude values along the cross track */ 

float64 plane[40*20], tme[20]; 

/* 
* Open the HDF swath file, "SwathFile.hdf". 
*/ 

swfid = SWopen("SwathFile.hdf", DFACC_RDWR); 

if (swfid != -1) 
{ 

/* 
* Attach the "Swath1" swath. 
*/ 

SWid = SWattach(swfid, "Swath1"); 

if (SWid != -1) 
{ 

/* Write data starting at the beginning of each cross track */

start[1] = 0;

count[0] = 1;

count[1] = 10;


/*

* Loop through all the tracks, incrementing the track starting 
* position by one each time. 
*/ 

for (track = 0; track < 20; track++) 
{ 
start[0] = track; 
status = SWwritefield(SWid, "Longitude", start, NULL, 

count, lng); 

for (xtrack = 0; xtrack < 10; xtrack++) 
lat[xtrack] = track; 

status = SWwritefield(SWid, "Latitude", start, NULL, 
count, lat); 

} 

/* 
* Write Time Field 
*/ 
for (i=0;i<20;i++) tme[i] = 34574087.3 + 84893.2*i; 
status = SWwritefield(SWid, "Time", NULL, NULL, 

NULL, tme); 

/* 
* Write Spectra one plane at a time 
* Value is 100 * track index + band index 
*/ 

start[1] = 0; 
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 start[2] = 0;

count[0] = 1;

count[1] = 40;

count[2] = 20;

for (i = 0; i < 15; i++)

{

start[0] = i; 
for (j=0; j<40; j++) 
for (k= 0; k<20; k++) 
plane[j*20+k] = j*100 + i; 

status = SWwritefield(SWid, "Spectra", start, NULL, 
count, plane); 

}


/* Write User Attribute */

status = SWwriteattr(SWid, "TestAttr", DFNT_INT32, 4, attr);


} 
} 

status = SWdetach(SWid); 
status = SWclose(swfid); 

return; 
} 

Extracting Information from a Swath File: InquireSwath.c 

#include "hdf.h" 
#include "HdfEosDef.h" 

/* 
* In this example we will retrieve (1)information about the dimensions, (2) 
* the dimension mappings (geolocation relations), and (3) the swath fields. 
*/ 

main() 
{ 

intn status, i;

int32 swfid, SWid, ndims, nmaps, rk, nt, dim[8], nflds;

int32 *dims, *off, *inc, *indx, *rank, *ntype;

int32 n, strbufsize, dimsize, offset, incr, *sizes;

char *dimname, *dimmap, *fieldlist, dimlist[80];


/*

* Open the Swath File for read only access 
*/ 

swfid = SWopen("SwathFile.hdf", DFACC_READ); 

if (swfid != -1) 
{ 
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 /* Attach the swath */ 

SWid = SWattach(swfid, "Swath1"); 

if (SWid != -1) 
{ 
/* Inquire Dimensions */ 
ndims = SWnentries(SWid, HDFE_NENTDIM, &strbufsize); 
dims = (int32 *) calloc(ndims, 4); 
dimname = (char *) calloc(strbufsize + 1, 1); 
ndims = SWinqdims(SWid, dimname, dims); 
printf("Dimension list: %s\n", dimname); 
for (i = 0; i < ndims; i++) 
printf("dim size: %d\n", dims[i]); 

free(dims);

free(dimname);


/* Inquire Dimension Mappings */

nmaps = SWnentries(SWid, HDFE_NENTMAP, &strbufsize);

off = (int32 *) calloc(nmaps, 4);

inc = (int32 *) calloc(nmaps, 4);

dimmap = (char *) calloc(strbufsize + 1, 1);

nmaps = SWinqmaps(SWid, dimmap, off, inc);

printf("Dimension map: %s\n", dimmap);

for (i = 0; i < nmaps; i++)

printf("offset increment: %d %d\n", off[i], inc[i]); 

free(off); 
free(inc); 
free(dimmap); 

/* Inquire Indexed Dimension Mappings */

nmaps = SWnentries(SWid, HDFE_NENTIMAP, &strbufsize);

sizes = (int32 *) calloc(nmaps, 4);

dimmap = (char *) calloc(strbufsize + 1, 1);

nmaps = SWinqidxmaps(SWid, dimmap, sizes);

printf("Index Dimension map: %s\n", dimmap);

for (i = 0; i < nmaps; i++)

printf("sizes: %d\n", sizes[i]); 

free(sizes); 
free(dimmap); 

/* Inquire Geolocation Fields */

nflds = SWnentries(SWid, HDFE_NENTGFLD, &strbufsize);

rank = (int32 *) calloc(nflds, 4);

ntype = (int32 *) calloc(nflds, 4);

fieldlist = (char *) calloc(strbufsize + 1, 1);

nflds = SWinqgeofields(SWid, fieldlist, rank, ntype);

printf("geo fields: %s\n", fieldlist);

for (i = 0; i < nflds; i++)

printf("rank type: %d %d\n", rank[i], ntype[i]); 

free(rank);

free(ntype);

free(fieldlist);


/* Inquire Data Fields */

nflds = SWnentries(SWid, HDFE_NENTDFLD, &strbufsize);

rank = (int32 *) calloc(nflds, 4);
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 ntype = (int32 *) calloc(nflds, 4);

fieldlist = (char *) calloc(strbufsize + 1, 1);

nflds = SWinqdatafields(SWid, fieldlist, rank, ntype);


printf("data fields: %s\n", fieldlist); 
for (i = 0; i < nflds; i++) 
printf("rank type: %d %d\n", rank[i], ntype[i]); 

free(rank);

free(ntype);

free(fieldlist);


/* Get info on "GeoTrack" dim */

dimsize = SWdiminfo(SWid, "GeoTrack");

printf("Size of GeoTrack: %d\n", dimsize);


/* Get info on "GeoTrack/Res2tr" mapping */

status = SWmapinfo(SWid, "GeoTrack", "Res2tr", &offset, &incr);

printf("Mapping Offset: %d\n", offset);

printf("Mapping Increment: %d\n", incr);


/* Get info on "IndxTrack/Res2tr" indexed mapping */

dimsize = SWdiminfo(SWid, "IndxTrack");

indx = (int32 *) calloc(dimsize, 4);

n = SWidxmapinfo(SWid, "IndxTrack", "Res2tr", indx);

for (i = 0; i < n; i++)

printf("Index Mapping Entry %d: %d\n", i+1, indx[i]); 

free(indx); 

/* Get info on "Longitude" Field */

status = SWfieldinfo(SWid, "Longitude", &rk, dim, &nt, dimlist);

printf("Longitude Rank: %d\n", rk);

printf("Longitude NumberType: %d\n", nt);

printf("Longitude Dimension List: %s\n", dimlist);

for (i=0; i<rk; i++)

printf("Dimension %d: %d\n",i+1,dim[i]); 

} 
} 
status = SWdetach(SWid); 
status = SWclose(swfid); 

return; 
} 

Reading Data from a Swath File: ReadFields.c 

#include "hdf.h" 

/* 
* In this example we will (1) open the "SwathFile" HDF file, (2) attach to 
* the "Swath1" swath, and (3) read data from the "Longitude" field. 
* 
* Unlike the WriteField routine, we will read the field all at once. 
*/ 
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main() 
{ 

intn status, i, j, k, start[2],stride[2],count[2];

int32 swfid, SWid, attr[4];

float32 lng[20][10];

/* Allocate space for the longitude and spectral data */


/*

* Open the HDF swath file, "SwathFile.hdf". 
*/ 

swfid = SWopen("SwathFile.hdf", DFACC_READ); 

if (swfid != -1) 
{ 

/* 
* Attach the "Swath1" swath. 
*/ 

SWid = SWattach(swfid, "Swath1"); 

if (SWid != -1) 
{ 
/* Read the entire longitude field */ 
status = SWreadfield(SWid, "Longitude", NULL, NULL, NULL, lng); 

/* Print field */ 
for (i = 0; i < 20; i++) 
for (j = 0; j < 10; j++) 
printf("i j Longitude: %d %d %f\n", 

i, j, lng[i][j]); 

/* Read User Attribute */

status = SWreadattr(SWid, "TestAttr", attr);

for (i=0;i<4;i++)

printf("Attribute Entry %d: %d\n",i+1,attr[i]); 

} 
} 
status = SWdetach(SWid); 
status = SWclose(swfid); 
HEprint(stdout,0); 

return; 
} 
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3.3.3 Grid Interface 

3.3.3.1 Introduction 

This section will describe the routines available for storing and retrieving HDF-EOS Grid Data. 
A Grid data set is similar to a swath in that it contains a series of data fields of two or more 
dimensions. The main difference between a Grid and a Swath is in the character of their 
geolocation information. 

As described in Section 3.3.2, Swaths carry geolocation information as a series of individually 
located points (tie points or ground control points). Grids, though, carry their geolocation in a 
much more compact form. A grid object contains a set of projection coefficients. These data are 
used in projection equations contained in the HDF-EOS software interface. Together, these 
relatively few pieces of information define the location of all points in the grid. The coefficients 
can then be used to compute the latitude and longitude for any point in the grid. 

Figure 3-10. A Data Field in a Mercator-projected Grid 

In loose terms, each data field constitutes a map in a given standard projection. Although there 
may be many independent Grids in a single HDF-EOS file, within each Grid only one projection 
may be chosen for application to all data fields. Figures 3-10 and 3-11 show how a single data 
field may look in a Grid using two common projections. 

There are three important features of a Grid data set: the data fields, the dimensions, and the 
projection. Each of these is discussed in detail in the following subsections. 
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Figure 3-11.  A Data Field in an Interrupted Goode’s Homolosine-Projected Grid 

Data Fields 

The data fields are, of course, the most important part of the Grid. Data fields in a Grid data set 
and are rectilinear arrays of two or more dimensions. Most commonly, they are simply two
dimensional rectangular arrays. Generally, each field contains data of similar scientific nature 
which must share the same attributes. The data fields are related to each other by common 
geolocation. That is, a single set of geolocation information is used for all data fields within one 
Grid data set.  Note that Grid Data fields can be 'stacked' to make three dimensional data sets. 
For example, a Grid structure could consist of a gridded temperature field, density field and a 
wind speed field to make an N X M X 3 structure.  Several 3-D structures could be tied together 
by an additional parameter, such as time, to make a 4-D structure. 

Dimensions 

Dimensions are used to relate data fields to each other and to the geolocation information. To be 
interpreted properly, each data field must make use of the two predefined dimensions: “XDim” 
and “YDim”. These two dimensions are defined when the grid is created and are used to refer to 
the X and Y dimensions of the chosen projection. Although there is a limit of eight dimensions a 
data field in a Grid data set, it is not likely that the fields will need more than three: the 
predefined dimensions “XDim” and “YDim” and a third dimension for depth or height. 

Projections 

The projection is really the heart of the Grid. Without the use of a projection, the Grid would not 
be substantially different from a Swath. The projection provides a convenient way to encode 
geolocation information as a set of mathematical equations which are capable of transforming 
Earth coordinates (latitude and longitude) to X-Y coordinates on a sheet of paper. 

The choice of a projection to be used for a Grid is a critical decision for a data product designer. 
There is a large number of projections that have been used throughout history. In fact, some 
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projections date back to ancient Greece. For the purposes of HDF-EOS, however, only a few 
projections are built with the software. These come from the General Coordinate Transformation 
Package (GCTP) package of projections available from the US Geological Survey (USGS). 
Projections include: Geographic, Interrupted Goode’s Homolosine, Polar Stereographic, 
Universal Transverse Mercator, Space Oblique, and Lambert Azimuthal Equal Area. The full 
set of GCTP projections is contained in the SDP Toolkit library. (SDP Toolkit Users Guide for 
the ECS Project.)  The full library can also be used in conjunction with the HDF-EOS interface. 

For the purposes of the Grid interface, the data are assumed to have already been projected. The 
Grid interface allows the data producer to specify the exact GCTP parameters used to perform 
the projection and will provide for basic subsetting of the data fields by latitude/longitude 
bounding box 

The producer’s choice of a projection should be governed by knowledge of the specific 
properties of each projection and a thorough understanding of the requirements of the data set’s 
users. 

3.3.3.2 Applicability 

The Grid data model is intended for data processed at a high level. It is most applicable to data at 
EOS processing levels 3 and 4.  As an example, the ASTER & MODIS teams on EOS-Terra use 
Grid structures to store data. 

3.3.3.3 The Grid Data Interface 

The GD interface consists of routines for storing, retrieving, and manipulating data in grid data 
sets. 

GD API Routines 

All C routine names in the grid data interface have the prefix “GD” and the equivalent 
FORTRAN routine names are prefixed by “gd.” The GD routines are classified into the 
following categories: 

•	 Access routines initialize and terminate access to the GD interface and grid data sets 
(including opening and closing files). 

• Definition routines allow the user to set key features of a grid data set. 

• Basic I/O routines read and write data and metadata to a grid data set. 

• Inquiry routines return information about data contained in a grid data set. 

• Subset routines allow reading of data from a specified geographic region and by time. 

The GD function calls are listed and are described in detail in the HDF-EOS Users Guides 
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File Identifiers 

As with all HDF-EOS interfaces, file identifiers in the GD interface are 32-bit values, each 
uniquely identifying one open data file. They are not interchangeable with other file identifiers 
created with other interfaces. 

Grid Identifiers 

Before a grid data set is accessed, it is identified by a name which is assigned to it upon its 
creation. The name is used to obtain a grid identifier. After a grid data set has been opened for 
access, it is uniquely identified by its grid identifier. 

3.3.3.4 Programming Model 

The programming model for accessing a grid data set through the GD interface is as follows: 

1. Open the file and initialize the GD interface by obtaining a file id from a file name. 

2. Open OR create a grid data set by obtaining a grid id from a grid name. 

3. Perform desired operations on the data set. 

4. Close the grid data set by disposing of the grid id. 

5. Terminate grid access to the file by disposing of the file id. 

To access a single grid data set that already exists in an HDF-EOS file, the calling program must 
contain the following sequence of C calls: 

file_id = GDopen(filename, access_mode); 
gd_id = GDattach(file_id, grid_name); 
<Optional operations> 
status = GDdetach(gd_id); 
status = GDclose(file_id); 

To access several files at the same time, a calling program must obtain a separate id for each file 
to be opened. Similarly, to access more than one grid data set, a calling program must obtain a 
separate grid id for each data set. For example, to open two data sets stored in two files, a 
program would execute the following series of C function calls: 

file_id_1 = GDopen(filename_1, access_mode); 
gd_id_1 = GDattach(file_id_1, grid_name_1); 
file_id_2 = GDopen(filename_2, access_mode); 
gd_id_2 = GDattach(file_id_2, grid_name_2); 
<Optional operations> 
status = GDdetach(gd_id_1); 
status = GDclose(file_id_1); 
status = GDdetach(gd_id_2); 
status = GDclose(file_id_2); 

Because each file and grid data set is assigned its own identifier, the order in which files and 
data sets are accessed is very flexible. However, it is very important that the calling program 
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individually discard each identifier before terminating. Failure to do so can result in empty or, 
even worse, invalid files being produced. 

It is permissible to have any number of Grid (Point, Swath) objects in a single HDF EOS file. 
PTopen () must be called to open each object (structure).  It is o.k. to have more than one object 
open at a time. 

3.3.3.5 GCTP Usage 

The HDF-EOS Grid API uses the U.S. Geological Survey General Cartographic Transformation 
Package (GCTP) to define and subset grid structures.  This section described codes used by the 
package. 

GCTP Projection Codes 

GCTP_GEO (0) Geographic 
GCTP_UTM (1) Universal Transverse Mercator 
GCTP_ALBERS (3) Albers Conical Equal_Area 
GCTP_LAMCC (4) Lambert Conformal Conic 
GCTP_MERCAT (5) Mercator 
GCTP_PS (6) Polar Stereographic 
GCTP_POLYC (7) Polyconic 
GCTP_TM (9) Transverse Mercator 
GCTP_LAMAZ (11) Lambert Azimuthal Equal Area 
GCTP_HOM (20) Hotine Oblique Mercator 
GCTP_SOM (22) Space Oblique Mercator 
GCTP_GOOD (24) Interrupted Goode Homolosine 
GCTP_ISINUS1 (31) Integerized Sinusoidal Projection** 
GCTP_BCEA (98) Behrmann Cylindrical Equal-Area (for EASE grid) 
GCTP_ISINUS (99) Integerized Sinusoidal Projection* 

*The Integerized Sinusoidal Projection was not part of the original GCTP package. It has been 
added by ECS.  See Level-3 SeaWiFS Data Products: Spatial and Temporal Binning 
Algorithms. Additional references are provided in Section 2. 

**In the new GCTP package, the Integerized Sinusoidal Projection is included as the 31st 
projection.  The Code 31 was added to HDF-EOS for users who wish to use 31 instead of 99 for 
Integerized Sinusoidal Projection. 

3.3.3.6 Example Usage of the Grid Interface 

The following C program is an example of the usage of the HDF-EOS Grid interface.The 
program will create, define, and write a simple Grid data set to an HDF-EOS file. Examples of 
inquiry, reading and subsetting the file are also presented.  Other C and FORTRAN examples 
are contained in the HDF-EOS Users Guide. 
(http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html) 
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Grid Structure Creation: SetupGrid.c 

#include "hdf.h"

#include "HdfEosDef.h"


/*

* In this example we will (1) open the "GridFile" HDF file, (2) attach to

* the "Grid1" grid, and (3) define the grid fields.

*/


main()

{


intn status, i, j;

int32 gdfid, GDid1, GDid2, nflds;

int32 dims[8], start[8], count[8];

float32 fillval1=-7.0, fillval2=-9999.0, f32;

float32 datbuf[100000];

char fieldlist[255];


/*

* We first open the HDF grid file, "GridFile.hdf". Because this file

* already exist and we wish to write to it, we use the DFACC_RDWR access

* code in the open statement. The GDopen routine returns the grid file

* id, gdfid, which is used to identify the file in subsequent routines.

*/


gdfid = GDopen("GridFile.hdf", DFACC_RDWR);


/*

* If the grid file cannot be found, GDopen will return -1 for the file

* handle (gdfid). We there check that this is not the case before

* proceeding with the other routines.

*

* The GDattach routine returns the handle to the existing grid "Grid1",

* GDid. If the grid is not found, GDattach returns -1 for the handle.

*/


if (gdfid != -1)

{


GDid1 = GDattach(gdfid, "UTMGrid");


/* The next two calls create 2 SDSs. The Merge Flag is turned

* off. The SDS's are located in the "Data Fields" Vgroup.

*/


status = GDdeffield(GDid1, "Pollution", "Time,YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);


status = GDdeffield(GDid1, "Vegetation", "YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);


/* The next call adds the required Metadata for a

* field in the StructMetadata.0 Vdata.

*/


status = GDwritefieldmeta(GDid1, "Extern", "YDim,XDim",
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 DFNT_FLOAT32);


/* This call sets the fill value for the field Pollution, that

* was defined above. A fill value is written to every element

* that is not written by the first write for a field.

*/


status = GDsetfillvalue(GDid1, "Pollution", &fillval1);

GDid2 = GDattach(gdfid, "PolarGrid");


/* The next two calls create 1 SDS. The Merge Flag is turned

* on. The SDS is located in the "Data Fields" Vgroup.

*/


status = GDdeffield(GDid2, "Temperature", "YDim,XDim",

DFNT_FLOAT32, HDFE_AUTOMERGE);


status = GDdeffield(GDid2, "Pressure", "YDim,XDim",

DFNT_FLOAT32, HDFE_AUTOMERGE);


/* The next call creates a SDS. The Merge Flag is turned

* off. The SDS is located in the "Data Fields" Vgroup.

*/


status = GDdeffield(GDid2, "Soil Dryness", "YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);


/* The next call creates a SDS. The Merge Flag is turned

* on. This doesn't merge with the SDS created above, because

* the fields have different datatypes and are not the same size

* The SDS is located in the "Data Fields" Vgroup.

*/


status = GDdeffield(GDid2, "Spectra", "Bands,YDim,XDim",

DFNT_FLOAT64, HDFE_AUTOMERGE);


/* This call sets the fill value for the field Pollution, that

* was defined above.

*/


status = GDsetfillvalue(GDid2, "Pressure", &fillval2);

}


GDdetach(GDid1);

GDdetach(GDid2);

GDclose(gdfid);


return;

}


Figure 3-12. show the HDF objected created by the above program. 
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UTMGrid


Vgroup: GridFile.hdf Vgroup: PolarGrid.hdf Vgroup: GeoGrid.hdf 

Vgroup Vgroup Vgroup 

Data Fields Data Fields Data Fields 

Vgroup Vgroup Vgroup 

Grid Attributes Grid Attributes Grid Attributes 

Vgroup:GridFile.hdf 

Vdata Vdata 

HDFEOSVersion StuctMetadata.0 

Figure 3-12. HDF Objects Created by Program: SetupGrid.c 

Grid Field Definition: DefineGDflds.c 

#include "hdf.h"

#include "HdfEosDef.h"


/*

* In this example we will (1) open the "GridFile" HDF file, (2) attach to

* the "Grid1" grid, and (3) define the grid fields.

*/


main()

{


intn status, i, j;

int32 gdfid, GDid1, GDid2, nflds;

int32 dims[8], start[8], count[8];

float32 fillval1=-7.0, fillval2=-9999.0, f32;

float32 datbuf[100000];

char fieldlist[255];


/*

* We first open the HDF grid file, "GridFile.hdf". Because this file
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 * already exist and we wish to write to it, we use the DFACC_RDWR access

* code in the open statement. The GDopen routine returns the grid file

* id, gdfid, which is used to identify the file in subsequent routines.

*/


gdfid = GDopen("GridFile.hdf", DFACC_RDWR);


/*

* If the grid file cannot be found, GDopen will return -1 for the file

* handle (gdfid). We there check that this is not the case before

* proceeding with the other routines.

*

* The GDattach routine returns the handle to the existing grid "Grid1",

* GDid. If the grid is not found, GDattach returns -1 for the handle.

*/


if (gdfid != -1)

{


GDid1 = GDattach(gdfid, "UTMGrid");


/* The next two calls create 2 SDSs. The Merge Flag is turned

* off. The SDS's are located in the "Data Fields" Vgroup.

*/


status = GDdeffield(GDid1, "Pollution", "Time,YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);


status = GDdeffield(GDid1, "Vegetation", "YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);


/* The next call adds the required Metadata for a

* field in the StructMetadata.0 Vdata.

*/


status = GDwritefieldmeta(GDid1, "Extern", "YDim,XDim",

DFNT_FLOAT32);


/* This call sets the fill value for the field Pollution, that

* was defined above. A fill value is written to every element

* that is not written by the first write for a field.

*/


status = GDsetfillvalue(GDid1, "Pollution", &fillval1);


GDid2 = GDattach(gdfid, "PolarGrid");


/* The next two calls create 1 SDS. The Merge Flag is turned

* on. The SDS is located in the "Data Fields" Vgroup.

*/


status = GDdeffield(GDid2, "Temperature", "YDim,XDim",

DFNT_FLOAT32, HDFE_AUTOMERGE);


status = GDdeffield(GDid2, "Pressure", "YDim,XDim",

DFNT_FLOAT32, HDFE_AUTOMERGE);


/* The next call creates a SDS. The Merge Flag is turned

* off. The SDS is located in the "Data Fields" Vgroup.

*/


status = GDdeffield(GDid2, "Soil Dryness", "YDim,XDim",

DFNT_FLOAT32, HDFE_NOMERGE);
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 /* The next call creates a SDS. The Merge Flag is turned

* on. This doesn't merge with the SDS created above, because

* the fields have different datatypes and are not the same size

* The SDS is located in the "Data Fields" Vgroup.

*/


status = GDdeffield(GDid2, "Spectra", "Bands,YDim,XDim",

DFNT_FLOAT64, HDFE_AUTOMERGE);


/* This call sets the fill value for the field Pollution, that

* was defined above.

*/


status = GDsetfillvalue(GDid2, "Pressure", &fillval2);

}


GDdetach(GDid1);

GDdetach(GDid2);

GDclose(gdfid);


return;

}


Writing Data to a Grid File: WriteGDflds.c 

#include "hdf.h"


/*

* In this example we will (1) open the "GridFile" HDF file, (2) attach to

* the "UTMGrid", and (3) write data to the "Vegetation" field. We will

* then attach to the "PolarGrid" and write to the "Temperature" field.

*/


main()

{


intn i, j, status;

int32 gdfid, GDid,start[3],stride[3],edge[3];

float32 f32=1.0;

float32 veg[200][120], temp[100][100];


/* Fill veg array */

for (i=0; i<200;i++)

for (j=0; j<120; j++)


veg[i][j] = 10+i;


/* Fill temp array */

for (i=0; i<100;i++)

for (j=0; j<100; j++)


temp[i][j] = 100*i+j;


/*

* Open the HDF grid file, "GridFile.hdf".

*/


gdfid = GDopen("GridFile.hdf", DFACC_RDWR);


if (gdfid != -1)

{
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/*

* Attach the "UTMGrid".

*/


GDid = GDattach(gdfid, "UTMGrid");


if (GDid != -1)

{


status = GDwritefield(GDid, "Vegetation",

NULL, NULL, NULL, veg);


status = GDwritefield(GDid, "Vegetat",

NULL, NULL, NULL, veg);


status = GDwriteattr(GDid, "float32", DFNT_FLOAT32, 1, &f32);

}


GDdetach(GDid);


GDid = GDattach(gdfid, "PolarGrid");

if (GDid != -1)

{


status = GDwritefield(GDid, "Temperature",

NULL, NULL, NULL, temp);


}

GDdetach(GDid);


}


GDclose(gdfid);


return;

}


Extracting Information from the Grid Structure: InquireGrid.c 

#include "hdf.h"

#include "HdfEosDef.h"


/*

* In this example we will retrieve (1) information about the dimensions,

* (2) the dimension mappings (geolocation relations), and (3) the grid

* fields.

*/


main()

{


intn status, i;

int32 gdfid, GDid1, ndim, nmap, nfld, rk, nt, nflds;

int32 dims[32], rank[32], ntype[32];

int32 n, strbufsize, sizes[16], GDid2;

int32 xdimsize, ydimsize, dimsize, projcode, zonecode;

int32 spherecode;

float64 upleftpt[2], lowrightpt[2], projparm[16];

char dimname[1024], fieldlist[1024];
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 /*

* Open the Grid File for read only access

*/


gdfid = GDopen("GridFile.hdf", DFACC_READ);


if (gdfid != -1)

{


/* Attach the grid */


GDid1 = GDattach(gdfid, "UTMGrid");

GDid2 = GDattach(gdfid, "PolarGrid");

ndim = GDinqdims(GDid1, dimname, dims);

printf("Dimension list (UTMGrid): %s\n", dimname);

for (i=0;i<ndim;i++) printf("dim size: %d\n", dims[i]);

ndim = GDinqdims(GDid2, dimname, dims);

printf("Dimension list (PolarGrid): %s\n", dimname);

for (i=0;i<ndim;i++) printf("dim size: %d\n", dims[i]);


dimsize = GDdiminfo(GDid1, "Time");

printf("Size of \"Time\" Array: %d\n", dimsize);


dimsize = GDdiminfo(GDid2, "Bands");

printf("Size of \"Bands\" Array: %d\n", dimsize);


status = GDgridinfo(GDid1, &xdimsize, &ydimsize,

upleftpt, lowrightpt);


printf("X dim size, Y dim size (UTMGrid): %d %d\n",

xdimsize, ydimsize);


printf("Up left pt (UTMGrid): %lf %lf\n",

upleftpt[0], upleftpt[1]);


printf("Low right pt (UTMGrid): %lf %lf\n",

lowrightpt[0], lowrightpt[1]);


status = GDgridinfo(GDid2, &xdimsize, &ydimsize,

upleftpt, lowrightpt);


printf("X dim size, Y dim size (PolarGrid): %d %d\n",

xdimsize, ydimsize);


printf("Up left pt (PolarGrid): %lf %lf\n",

upleftpt[0], upleftpt[1]);


printf("Low right pt (PolarGrid): %lf %lf\n",

lowrightpt[0], lowrightpt[1]);


status = GDprojinfo(GDid1, &projcode, &zonecode,

&spherecode, NULL);


printf("projcode , zonecode (UTMGrid): %d %d\n", projcode, zonecode);

printf("spherecode (UTMGrid): %d\n", spherecode);


status = GDprojinfo(GDid2, &projcode, NULL,

&spherecode, projparm);


printf("projcode (PolarGrid): %d\n", projcode);

printf("spherecode (PolarGrid): %d\n", spherecode);

for (i=0; i<13; i++)


printf("Projection Parameter: %d %lf\n",i,projparm[i]);


nflds = GDinqfields(GDid1, fieldlist, rank, ntype);

if (nflds != 0)

{
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 printf("Data fields (UTMGrid): %s\n", fieldlist);

for (i=0;i<nflds;i++)


printf("rank type: %d %d\n",rank[i],ntype[i]);

}


nflds = GDinqfields(GDid2, fieldlist, rank, ntype);

if (nflds != 0)

{


printf("Data fields (PolarGrid): %s\n", fieldlist);

for (i=0;i<nflds;i++)


printf("rank type: %d %d\n",rank[i],ntype[i]);

}


status = GDfieldinfo(GDid2, "Spectra", rank,

dims, ntype, dimname);


printf("Spectra rank dims: %d\n",rank[0]);

for (i=0; i<rank[0]; i++)


printf("Spectra dims: %d %d\n",i,dims[i]);

printf("Spectra dims: %s\n", dimname);


n = GDnentries(GDid1, HDFE_NENTDIM, &strbufsize);

printf("Number of dimension entries (UTMGrid): %d\n", n);

printf("Length of Dimension List (UTMGrid): %d\n", strbufsize);


n = GDnentries(GDid1, HDFE_NENTDFLD, &strbufsize);

printf("Number of data fields (UTMGrid): %d\n", n);

printf("Length of Field List (UTMGrid): %d\n", strbufsize);


}

GDdetach(GDid1);

GDdetach(GDid2);

GDclose(gdfid);


return;

}


Reading from a Grid Structure: ReadGDflds.c 

#include "hdf.h"


/*

* In this example we will (1) open the "GridFile" HDF file, (2) attach to

* the "UTMGrid", and (3) read data from the "Vegetation" field.

*/


main()

{


intn i, j, status;

int32 gdfid, GDid;

float32 f32=1.0;

float32 veg[200][120];


/*

* Open the HDF grid file, "GridFile.hdf".

*/
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 gdfid = GDopen("GridFile.hdf", DFACC_RDWR);


if (gdfid != -1)

{


/*

* Attach the "UTMGrid".

*/


GDid = GDattach(gdfid, "UTMGrid");


if (GDid != -1)

{


status = GDreadfield(GDid, "Vegetation",

NULL, NULL, NULL, veg);


status = GDreadattr(GDid, "float32", &f32);


}

}


GDdetach(GDid);

GDclose(gdfid);


return;

}


Subsetting a Grid Structure: SubsetGrid.c 

#include "hdf.h"

#include <math.h>


/*

* In this example we will (1) open the "GridFile" HDF file, (2) attach to

* the "PolarGrid", and (3) subset data from the "Temperature" field.

*/


main()

{


intn i, j, status;

int32 gdfid, GDid, regionID, size, dims[8], ntype, rank;

float32 *datbuf32;

float64 cornerlon[2], cornerlat[2];

float64 *datbuf64, upleft[2], lowright[2];


/*

* Open the HDF grid file, "GridFile.hdf".

*/


gdfid = GDopen("GridFile.hdf", DFACC_RDWR);


if (gdfid != -1)
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 {


GDid = GDattach(gdfid, "PolarGrid");


if (GDid != -1)

{


cornerlon[0] = 57.;

cornerlat[0] = 23.;

cornerlon[1] = 59.;

cornerlat[1] = 35.;

cornerlon[0] = 0.;

cornerlat[0] = 90.;

cornerlon[1] = 90.;

cornerlat[1] = 0.;


regionID = GDdefboxregion(GDid, cornerlon, cornerlat);

status = GDregioninfo(GDid, regionID, "Temperature", &ntype,


&rank, dims, &size, upleft, lowright);

printf("size: %d\n",size);


datbuf32 = (float32 *) calloc(size, 1);


status = GDextractregion(GDid, regionID, "Temperature",

datbuf32);


free(datbuf32);

}

}


GDdetach(GDid);

GDclose(gdfid);


return;

}
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4. Related Topics 

4.1 Introduction 

In this Section, we discuss ECS metadata, ECS Browse specification and EOSView, the HDF-
EOS browse tool. 

4.2 ECS Metadata and the Science Data Processing Toolkit 

In the preceding sections, we have provided an introduction to HDF and HDF-EOS. These 
software libraries can be used in stand-alone fashion to format science data.  If products are to be 
inserted into ECS archives, ECS core metadata is required. The metadata is used in ECS 
archives to perform search and order functions. Services, such as subsetting can also be 
performed using metadata attributes stored in HDF-EOS files. This metadata varies from product 
to product.  The more than 200 potential metadata attributes are described in Release B Earth 
Sciences Data Model, which is also known as the ECS data model.  Minimal attributes, such as 
geographic 'bounding box' of a data granule, time stamp of the data, granule short name, are 
included. Access to the metadata for data production and data applications is provided by the 
SDP Toolkit software library. (SDP Toolkit Users Guide for the ECS Project). The reader is 
referred to this document and references therein for a detailed discussion ECS metadata and 
access. 

Because of the functional overlap of the HDF and HDF-EOS libraries, and the SDP Toolkit, it is 
important to understand what each one contains and how they are related. NCSA HDF is a 
subroutine library freely available as source code from the National Center for Supercomputing 
Applications. The basic HDF library has its own documentation, and comes with a selection of 
simple utilities. 

HDF-EOS is a higher level library available from the ECS project as an add-on to the basic HDF 
library. It requires NCSA HDF for successful compiling and linking and is widely available (at 
no charge) to all interested parties. The basic HDF library is also be available from the ECS 
project. 

The SDP Toolkit is a large, complex library of functions for use by EOS data producers. It 
presents a standard interface to Distributed Active Archive Center (DAAC) services for data 
processing, job scheduling, and error handling. It also contains common applications, such as 
geolocation, time/date conversion, unit conversion, coordinate transformation, Level 0 access. 
The SDP toolkit is also used by data producers working outside ECS DAACs. The Toolkit 
distribution includes source code for both HDF and HDF-EOS. 

EOS instrument data producers will use the SDP Toolkit in conjunction with the HDF-EOS and 
HDF libraries. Of primary importance is process control and metadata handling tools. The 
former is used to access physical file handles required by the HDF and Toolkit libraries. The 
SDP Toolkit uses logical file handles to access data, while HDF (HDF-EOS) requires physical 
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handles. Users are required to make one additional call, using the SDP toolkit to access the 
physical handles. Please refer to the SDP Toolkit Users Guide for the ECS Project, for an 
example. This document gives examples of HDF-EOS usage in conjunction with the SDP 
Toolkit. 

Metadata tools will be used to access and write inventory and granule specific metadata into 
their designated HDF structures. Please refer to the SDP Toolkit Users Guide. 

We make an important distinction between core metadata and the structural metadata referred to 
in the software description. Structural metadata specifies the internal HDF-EOS file structure 
and the relationship between geolocation data and the data itself. Structural metadata is created 
and then accessed by calling the HDF-EOS functions.  Core metadata, also known as inventory 
metadata, is used by ECS to perform archival services on the data. A copy will be written into 
HDF-EOS files as a text attribute, by SDP toolkit calls and another copy is written into database 
tables in the ECS archives. The two sets of metadata are not dynamically linked. However, the 
data producer should use consistent naming conventions when writing granule metadata when 
calling the HDF-EOS API. NCSA HDF libraries, on which HDF-EOS is based, is installed 
automatically with the SDP Toolkit installation script. Please refer to Appendix A for links to 
information pertaining installation and maintenance of the SDP Toolkit. These terms were also 
discussed in Section 3.3.2 in this document. 

A summary of toolkit functionality is shown in Table 4-1. 

Table 4-1.  Summary of Toolkit Functions 
Process Control Provides connection logical file ID to physical data 

location, paths to staged data files and access to file 
attributes. 

Error/Status Message 
Handling 

Communication of user messages to a log file (Status 
Message File) 

Generic File I/O User access to staged data. 
Metadata Access Tools Formatting, reading, writing, updating metadata 

attributes.  Writing is done to a pre-defined template 
called a Metadata Configuration File (MCF). The 
completed output has the extension ".met". 

Time/Date conversion library Toolkit internal time is TAI, conversion between many 
other systems is provided. 

Ancillary data access Several specialized data sets are available:  1km DEM, 3 
Km DEM, 100m DEM, Land water mask.  Access by 
geolocation provided. 

Constants and Unit 
Conversions 

Access to standard conversions 

Geolocation tools Transforms from instrument and platform coordinates to 
lat./long. e.g. Locate a pixel in geodetic of geocentric 
coordinates and find pierce point position and velocity. 

Geo-coordinate system 
conversion 

Generalized Coordinate Transform Package (GCTP) and 
other projections provided. 
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A Toolkit Programming Example: Writing and Reading Metadata in HDF Files 

The following C program is an example of writing ECS metadata into an HDF (HDF-EOS) file. 
The program will also read metadata back out of the same file.  The program assumes that a 
Process Control File (PCF) has been supplied. This file is a list of logical unit numbers 
associated with physical file handles.  The program also assumes the availability of a Metadata 
Configuration File (MCF), which is a template of for writing metadata attributes. The MCF 
contains a list of parameters for which values are to be written by the code. 

The metadata is stored as ASCII text in HDF text objects. In the program, these objects are 
callad 'coremetadata' and 'ProductMetadata'. Core Metadata are also know as inventory 
metadata. A copy is placed in ECS data bases for purposes of searching and ordering data. 
Product or archive metadata is also stored which the physical data files, but is not accessible by a 
database. 

Details of these ancillary files, function descriptions and additional examples are found in the 
SDP Toolkit Users Guide for the ECS Project. The examples include FORTRAN programs. 

/*

* C METADATA EXAMPLE

*

* In this example we show how to write ECS metadata to an HDF file.

* Although not included in these examples, we recommend that after each

* function call a conditional "IF" statement should be used to test for

* errors. We just include a simple write statement.

* The file logical IDs are mapped to physical file names in a PCF file

* and user should set environment variable PGS_PC_INFO_FILE to the user's

* PCF file before runing the executable.

*/


#include <PGS_MET.h>

#include <stdio.h>

#include <string.h>

#include "hdf.h"

#include <PGS_SMF.h>

#include <PGS_PC.h>


#define INVENTORY 1

#define ARCHIVED 2

#define OUT_FILE 22222 /* Logical ID for the HDF file where metadata


to be written */

#define MCF_FILE 10250 /* Logical ID for MCF file */


main ()

{


char filename[PGSd_PC_FILE_PATH_MAX];

char AttrName[256];

char AttrValString[256];

char *cptr;

int32 sdid;
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 PGSt_integer version;

PGSt_MET_all_handles mdHandles;

PGSt_SMF_status status = PGS_S_SUCCESS;

PGSt_integer i;


char *asversion ="105";

char *svals[10];

char *svals2[5];

char *svals3[5] ={"1997","1998","1999",""};


/* Initialize MCF file into memory */


status = PGS_MET_Init ( MCF_FILE, mdHandles );


/*************************************************/

/* The following calls will set a few attributes */

/* in the INVENTORYMETADATA section */

/*************************************************/


/* set PGEVersion */


status = PGS_MET_SetAttr ( mdHandles[INVENTORY], "PGEVersion",

&asversion );


/* set InputPointer */


strcpy ( AttrName, "InputPointer" );

status = PGS_MET_SetAttr ( mdHandles[INVENTORY], AttrName, svals3 );


/* set AdditionalAttributeName.1 and ParameterValue.1 */


strcpy ( AttrName, "AdditionalAttributeName.1" );

strcpy ( AttrValString, "string 1" );

cptr = AttrValString;

status = PGS_MET_SetAttr ( mdHandles[INVENTORY], AttrName, &cptr );


strcpy ( AttrName, "ParameterValue.1" );

strcpy ( AttrValString, "string 11" );

cptr = AttrValString;

status = PGS_MET_SetAttr ( mdHandles[INVENTORY], AttrName, &cptr );


/* ===== Get attribute values set by previous calls ===== */


svals[0] = (char *) malloc(30);

svals[1] = (char *) malloc(30);

svals[2] = (char *) malloc(30);

svals[3] = (char *) malloc(30);

svals[4] = (char *) malloc(30);


for(i = 0; i<4; i++) strcpy(svals[i], "");

status = PGS_MET_GetSetAttr( mdHandles[INVENTORY],


"AdditionalAttributeName.1", svals);


4-4 175-WP-001-002




 for(i = 0; i<4; i++) printf("%s \n", svals[i]);


for(i = 0; i<5; i++) strcpy(svals[i], "");

status = PGS_MET_GetSetAttr( mdHandles[INVENTORY],


"ParameterValue.1", svals);

for(i = 0; i<5; i++) printf("%s \n", svals[i]);


for(i = 0; i<5; i++) strcpy(svals[i], "");

status = PGS_MET_GetSetAttr( mdHandles[INVENTORY], "PGEVersion", svals);

for(i = 0; i<5; i++) printf("%s \n", svals[i]);


/* Get HDF file name from PCF */


version = 1;

status = PGS_PC_GetReference ( OUT_FILE, &version, filename );


/* Open HDF File to write metadata to it */


sdid = SDstart ( filename, DFACC_RDWR );


/* Write INVENTORY metadata. This will write INVENTORY metadata to

the hdf file and will also write INVENTORY metadata to *.met ASCII

file */


status = PGS_MET_Write ( mdHandles[INVENTORY], "coremetadata",

sdid );


/* Write out ARCHIVED metadata */


status = PGS_MET_Write ( mdHandles[ARCHIVED], "ProductMetadata",

sdid );


/* Close HDF file */


status = SDend ( sdid );


/* Reading Attributes from the HDF file */

/* Get attribute value for "string 1" from the HDF file */


strcpy ( AttrName, "string 1");

for(i = 0; i<5; i++) strcpy(svals[i], "");

status = PGS_MET_GetPCAttr(OUT_FILE, 1, "coremetadata", AttrName,svals);

for(i = 0; i<5; i++) printf("%s \n", svals[i]);


/* Get attribute value for PGEVersion from the HDF file */


strcpy ( AttrName, "PGEVersion");

for(i = 0; i<5; i++) strcpy(svals[i], "");

status = PGS_MET_GetPCAttr(OUT_FILE, 1, "coremetadata",AttrName,svals);

for(i = 0; i<5; i++) printf("%s \n", svals[i]);
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 /* Get attribute value for InputPointer from the HDF file */


strcpy ( AttrName, "InputPointer");

for(i = 0; i<5; i++) strcpy(svals[i], "");

status = PGS_MET_GetPCAttr(OUT_FILE, 1, "coremetadata",AttrName,svals);

for(i = 0; i<5; i++) printf("%s \n", svals[i]);


/* Remove MCF from memory */


PGS_MET_Remove ();


/* Free allocated memory */


free(svals[0]);

free(svals[1]);

free(svals[2]);

free(svals[3]);

free(svals[4]);

return (0); 

} 

4.3 ECS Browse Specification 

4.3.1 Overview 

Browse data granules are associated with ECS standard product granules. The former are used as 
aids to ordering the usually much larger latter granules. Browse products are also considered to 
be standard products. They contain minimal ECS metadata for purpose of rapid searches.  A 
more detailed description is given in the ECS Browse Granule Description. 

Images are the preferred form of browse products in ECS because images can be compressed 
before storage and they are easily displayed and readily understood. Images conform with the 
intended purpose of browse which is to provide rapidly-accessible, on-line representations of 
data, not reduced-resolution samples of the data itself. However, tables (arrays) and text are also 
acceptable forms of browse. These are most useful as adjuncts to images. 

All browse granules reside on rapid-access file storage. In order for the Browse service to satisfy 
its purpose of supporting on-line, rapid-access to browse, the overall size of a single browse 
granule is limited to one megabyte. HDF supports JPEG and other lossy and lossless 
compression methods. The one megabyte limit is on the object size after compression has been 
applied. 

ECS Browse granules are to be composed of any combination of the vanilla HDF data objects 
illustrated in Figure 5-1. The use of 8-bit (RIS8) or 24-bit (RIS24) raster images best supports 
the intended purpose of providing a real-time, on-line aid to ordering. Extensions to basic 
images are also possible. Text may be used to provide more lengthy annotations than provided 
for in the ECS core metadata attribute: BrowseDescription. Science Data Tables would be used 
to provide either data values or to generate overlays, scatter plots, or linegraphs. Further 
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discussion of image, text and table browse objects, as well as recommended associated metadata, 
is contained in the ECS Browse Granule Description. 

Image 

(RIS8, RIS24)


Text 
(Character Attribute) 

This psuedo-color image was 

derived using instrument 

channels 1,3 and 5 displayed 

as Red, Green and Blue, 

respectively. Each pixel is 

the median value in a 10x10 

box, with missing pixels..... 

Science Data Table 
(VDATA) 

Figure 4.1. Browse Package Data Objects 

The simplest form an ECS browse granule can take is an HDF file containing either an 8-bit 
(RIS8) or 24-bit (RIS24) raster image. Command-line utilities are available from NCSA for 
converting raw 8-bit or 24-bit images and JPEG files into generic HDF image files, with options 
to include an associated color palette.  The recommended size is 300 by 300 pixels. This pixel 
size is a good target for the size of browse images. Larger images are acceptable, within the 1Mb 
file size limit, but with the ECS Data Gateway Client (EDG), the user may need to scroll around 
to view the entire image. This Client is the users view on ECS data collections. It is a search and 
order tool. 

No geolocation services such as latitude-longitude under cursor location, overlay of coastlines, 
or a latitude-longitude graticule are provided on generic HDF browse granules. 

If the ECS Science Data Processing (SDP) Toolkit is being used to generate browse granules, 
the Toolkit’s metadata routines can be used to write ECS core metadata attributes. In the Science 
Computing Facility (SCF) environment it can also be used to write any other product-specific 
metadata. 

4.3.2 Browse Package Guidelines 

The purpose of browse data in the ECS is to serve as a real-time on-line aid to ordering full data 
product granules. As such, its design must provide for fast access, small size, and simple 
organization that leads to easy interpretation. Our assumptions about these browse packages 
include the following: 

•	 We expect that every Standard Data Product granule will have a corresponding browse 
package. This browse package can contain many different objects, as described below. 

•	 We expect that  instrument teams will generate these browse packages as part of their normal 
production processing. 
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•	 We expect that browse data packages will be static, not dynamic. That is; they will be 
generated once and archived rather than being produced in response to each user’s request. 

•	 We finally expect that some browse packages will consist of an “example” dataset plus 
additional data (e.g., cloud cover) rather than a subsampled product granule. 

Objects that we plan to support in browse packages include the following (along with their 
associated metadata): 

• Image: 8-bit raster image with palette, or 24-bit raster image. 

• Table: Science Data Table meant to be displayed as numbers. 

• Plot: Science Data Table meant to be displayed graphically. 

• Text: ASCII Text (Plain or Formatted). 

• Animation: A series of raster images. 

Most common browse packages will consist of a single Image generated by a subsampling 
algorithm applied to a large array (along with associated metadata). Note that multidimensional 
array is not a supported browse package component. This prohibition will hopefully encourage 
the use of browse for visualizations of data, and not for delivering data itself. 

Browse Package 

Browse Data Objects 

Browse Package Description 
Example text. This is example of text block. It may include parsealbe language. Or a variety of other textual 
information. It may include formatted text as long as the formatting is Example text. This is example of text 
block. It may include parsealbe langua 

Browse Image Object 

Image Description 
Example text. This is example of text block. It 
may include parsealbe language. Or a variety of 
other textual information. It may include 
formatted text as long as th 

Browse Table Object 

Table Description 
Example text. This is example of text block. It 
may include parsealbe language. Or a variety 
of other textual information. It may include 
formatted text as long as th 

Figure 4-2. A Browse Data Package 
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We further propose the following general specifications for browse data products: 

•	 A maximum overall package size of around one megabyte. A package much larger than this 
will tend to be less an interactive aid to ordering of data, and more of a data product in and 
of itself. Note that browse images can be compressed using lossy compression to help them 
fit under this limit (it can be lossy since all we care about is the image appearance, not the 
image data values). We further propose that no particular component of the browse package 
exceed the one megabyte limit. 

•	 A target image size of around 620 X 620 pixels for images. Larger images will be allowed 
where absolutely required, if they can fit under the one megabyte limit when compressed. 

•	 8-bit raster images with an associated palette will be limited to say 150 entries in the palette. 
This limitation will reduce the chance that the image display will be substantively degraded 
when displayed on a system with a reduced color range. In addition, we would like fixed 
colors (colors used for burned in overlays, etc.) to be stored only in the highest and lowest 
palette entries (0 and 255, for example). This is because when a color palette is compressed 
to fit into a smaller color range, all entries except the first and last one may move by an entry 
or two. 

4.4 EOSView: An HDF-EOS ‘Browse Tool’ 

4.4.1 Introduction 

The HDF-EOS team has developed ‘EOSView’, a tool for examining and verifying HDF and 
HDF-EOS data files.  The contents of HDF files are displayed and individual objects can be 
selected for display.  Displays include raster images, datasets in tables, pseudocolor images of 
datasets, attributes, and annotations.  Simple animations can be performed for a file with 
multiple raster images.  A unique interface has been provided for handling HDF-EOS data 
structures.  The Swath/Point/Grid interface uses only HDF-EOS library calls. The EOSView 
user will not see the underlying HDF structures but will be prompted for what part of the HDF-
EOS object they wish to view. 
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Figure 4-3.  EOSView Main Window 

4.4.2 EOSView Features 

From the EOSView main window (figure 4-3) the user may select a file for viewing and then 
display the contents of the HDF file in a File Contents Window (figure 4-4). 

Figure 4-4.  EOSView File Contents Window 

Item in the File Contents Window list the top-level HDF and/or HDF-EOS objects in the file. 
These items are selectable and will be displayed in their proper form. Vgroups listed in the 
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contents window will be expanded in a tree format to allow the user to select objects stored 
inside of the Vgroup grouping.  In the above example the user has selected the file cosmic.hdf. 
This file contains an image of size 625 pixels by 427 pixels, and a palatte.  Other items which 
may be displayed in the list are Vgroups, Vdatas, 24-bit images, Scientific Data Sets or Numeric 
Data Groups, Swath/Point/Grid objects, file identifiers or descriptors.  If the user were to 
double-click on the Image in the above example the EOSView Image Display Window (figure 
4-5) would then appear. 

Figure 4-5.  EOSView Image Display Window 

The EOSView Image Display Window contains a host of features.  The user is allowed to select 
multiple palettes, zoom in and out using two (2) zooming methods, panning of zoomed images, 
and cursor tracking and placing. These features remain the same for pseudocolor images created 
from a numeric data set and for 24-bit images. 
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Figure 4-6. EOSView Help Display 

The user will notice that on each EOSView window menu bar the Help option is always present. 
EOSView has an on-line hypertext help system that can help the user navigate through each 
display in EOSView.  Underlined phrases in the help system are selectable links to more 
extensive help.  The user may ‘mark’ help pages for a quicker return and a search may be 
performed based on keywords 

The EOSView Table Display (figure 4-7) is the way in which EOSView can display tabular data 
commonly associated with numeric data sets. 
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Figure 4-7. EOSView Table Display 

The EOSView table display has several features of note.  For numeric data the user may convert 
the table to an image or a plot (figure 4-8).  Many tables in HDF files may be quite large so 
EOSView has added the option to allow the user to ‘Jump To’ a specific row number.  The data 
in this table may be saved to either a binary or an ASCII file.  The ASCII file is written to meet 
the HDF ASCII Interchange Format (HAIF). 

Figure 4-8. EOSView Text Display 
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EOSView has the ability to display attribute data in a text display window (figure 4-8).  The text 
display window is also used to display File Indentifier and File Descriptor Data. 

In conclusion, EOSView has become a valuable tool to the HDF-EOS user community in 
verifying and browsing HDF and HDF-EOS data files.  It has the proven ability to handle large 
files, handle multiple files, and to breakdown HDF-EOS objects into verifiable data. 
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Appendix A. Obtaining Software


A.1 Obtaining the HDF Library and Documentation 

Access to NCSA software and documentation is available at http://hdf.ncsa.uiuc.edu. 

A.2 Obtaining HDF-EOS and the SDP Toolkit 

Access to HDF-EOS, SDP Toolkit and EOSView is found at:


http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html


The site contains explicit instructions for downloading the software.
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Appendix B. Additional HDF Topics


In this Appendix, we discuss various issues involved with the HDF. 

B.1 Data Interleaving 

Data interleaving is an important subject from the perspective of efficiency of data access and, 
sometimes conversely, from the perspective of organizational simplicity. Efficiency is important 
at the lower processing levels, where data volumes are large and the number of users is small. 
Organizational simplicity is important at higher processing levels, where the needs of large 
numbers of users are a major concern. The interleaving method chosen by the data producer 
effectively dictates the best access method for the users, including further processing software 
and user visualization tools. 

In HDF, interleaving is handled separately for each type of data object for which it is necessary. 
For instance, interleaving for SDSs (n-dimensional arrays of scalars) are handled differently 
from interlacing for RIS24s (24-bit raster images). The HDF library allows the user/producer to 
control the interleaving of SDSs, RIS24s, and Vdatas (tabular data). Note that in the HDF 
documentation; the term interlacing is used to refer to the concept of interleaving. The two terms 
will be used interchangeably in this document. 

B.1.1 SDS Interleaving 

The interleaving of an SDS is implied by the order of the dimensions as given to HDF in the 
creation of the SDS. The rule is that HDF will store the SDS on disk in the order specified by 
the dimensions given at creation time, using a row-major interpretation. For example, an SDS 
with dimensions defined as 2 by 3, or [2, 3] will be stored as an array of 2 rows of 3 columns 
each. Similarly, an SDS of dimensions [4, 5, 6] is regarded as an array of 4 planes of 5 rows of 6 
columns. 

C programmers will recognize this as ‘normal’ array order. FORTRAN programmers, however, 
should take note that this is the reverse order from the traditional column-major ordering used in 
FORTRAN programming. Given these rules for the specification of interleaving, a data producer 
can cause an SDS to be stored in any conceivable order, simply by re-arranging the order of the 
dimensions at creation time. 

B.1.2 RIS24 Interleaving 

The RIS24 interface will probably not be extensively used in the ECS, but it does provide 
flexible interleaving facilities, so we will discuss it here. In memory, a 24-bit raster image is 
implemented as an array of type uint8 (unsigned char) with dimensions width by height by 3 
(depth), in some order. As in the case of the SDS, the exact ordering of the dimensions is at the 
heart of the interleaving question. 

B-1 175-WP-001-002




By default, HDF assumes that the user will be working with images interleaved by pixel. This 
means that an image that is 200 pixels wide by 100 high is equivalent to an array of bytes with 
dimensions [100, 200, 3] and that the red, green, and blue values that make up an individual 
pixel are stored contiguously. 

You may also choose to interleave by scan-line or by scan-plane. Choosing interleaving by scan
line will require that the user declare arrays for the image mentioned above with dimensions 
[100, 3, 200], while scan-plane interleaving leads to dimensions of [3, 100, 200]. 

Regardless of the interleaving method used to store an image, a user may request to read  an 
image using any of the interleaving schemes. Of course, there is a performance penalty for any 
reorganization of the data. 

B.1.3 Vdata Interleaving 

There are two interleave options for Vdatas: FULL_INTERLACE and NO_INTERLACE. The terms 
are defined as follows: 

FULL_INTERLACE — The first value from each field is collected into a record. Successive 
records contain subsequent values from each field. This can also be called record
oriented storage, since whole records are stored contiguously. 

NO_INTERLACE — All data for the first field in the Vdata is stored contiguously in the file, 
then all the data for the second field, and so on. This can also be called field-oriented 
storage. 

The method of interleaving is defined for a particular Vdata at creation time with a call to a 
special library function. If no interleaving method is specified, then FULL_INTERLACE is 
assumed. The interleaving method used is encoded in the Vdata. 

As with the case of RIS24s, you can request that the library read Vdatas using either interleaving 
method. But again, you must pay a penalty in extra processing time to reorganize the data during 
the read operation. 

B.2 Subsetting 

The term “subsetting” has come to mean two very different processes in the context of the ECS 
system. The first meaning is where a user would like to extract a particular component from a 
standard data product granule. For example, she may want to look at just sensor channel 3. The 
corresponding data products include all channels in the same file, but she does not want to waste 
time downloading information she does not want. She would then request a subset of the 
standard data product, which delivers to her a file containing but that single array representing 
sensor channel 3. This sort of subsetting is easily handled by the existing HDF mechanisms. 

The second type of subsetting is where a particular region of a data element is requested. For 
example, a user may want to specify a latitude/longitude subrange within which to provide data. 
In HDF, this situation will need to be handled differently for each type of data element. HDF 
provides the capability to read or write any subpart of any data element, but the logic required to 

B-2 175-WP-001-002




decide which subpart is needed is highly dependent on the nature of the data element. Every 
effort is made to provide intelligent subsetting of each datatype. Specifically, each of the 
geolocated datatypes are capable of being subsetted by latitude/longitude box. 

B.3 File Sizes 

HDF imposes a two gigabyte limit (2,147,483,648 bytes) on the size of a single, self-contained 
HDF file and on the individual physical files that make up a single logical HDF file. Some teams 
say that this limit is too low for their needs. However, we are primarily concerned with user 
access to data. A file approaching HDF’s two gigabyte limit far exceeds the capabilities of the 
average current or near future science data user's computing facilities. We therefore do not 
consider the two gigabyte limit to be unreasonable 

We would even propose that user delivered HDF files not exceed around 512 megabytes in size. 
We further suggest that files be kept under 200 megabytes, wherever possible. 

Note that a newer version of HDF, HDF5 uses 64-bit addressing, which breaks the 2 GB size 
limit. HDF5 will be described in separate documents.  Given difficulties in managing files this 
large on end-user systems, we still recommend smaller (< 2GB) files. 

B.4 Compression Methods 

Compression algorithms come in two different types: 

• Lossless — A compression method that allows the original data to be reconstructed 
exactly as it was before the compression algorithm was applied. 

• Lossy — A compression method that can construct a reasonable facsimile of the original 
input data from the compressed data. 

Lossless compression will be used for most EOS data, because the loss of perfectly valid 
information cannot be tolerated. The only exception so far noted is browse data; because browse 
data is only meant to be a representation of the data as an aid to ordering. 

HDF-EOS will incorporate all HDF compression methods as they become available. 

B.5 Performance Issues 

B.5.1 Many Data Objects 

During Pathfinder and Version 0 efforts (which used HDF 3.2), it was found that HDF files 
containing many data objects caused performance problems. The main symptom was extreme 
slowness in opening the file, although there was also a slowdown in accessing individual data 
elements. 

The HDF libraries have greatly improved the situation. The multifile SDS and Vdata interfaces 
dramatically reduce the number of times the file is opened and closed. These interfaces are 
capable of concurrently dealing with more than one open file, rather than covertly performing 
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multiple file opens and closes like the older interfaces. The behavior of these interfaces 
effectively sidesteps the issue of slow file opens. This new library also implemented a more 
efficient, tree-based lookup scheme to locate data elements more quickly. 

Although major improvements have been realized in access to files with many data objects, it is 
still wise to avoid creating files with more than about 500 individual elements. The HDF utility 
program ‘hdfls’ can be used to aid in counting the number of data objects in a file. When 
invoked with the ‘-l’ option, hdfls will produce a list containing roughly one line for each data 
element in the file. The output of hdfls can be piped into the UNIX utility ‘wc’ or a similar 
program to count the number of data elements. 

It is important to note that the number of data elements in an HDF file can greatly exceed the 
number of data objects, such as SDSs. For example, a single SDS can easily generate a dozen 
data elements that refer to its attributes, its numerical scales, and so on. 

B.5.2 Large Data Objects 

Many of the proposed data products for EOSDIS require the use of very large data elements. 
Specifically, individual Vdatas and SDSs for some products will likely reach tens of megabytes 
in size. When a data element reaches such a size, it becomes important to optimize I/O 
performance for that element. 

One area where major performance gains can be realized is in data buffering. Buffering is where 
you fill up a memory buffer and then periodically write the buffer to disk. You optimally should 
have a large buffer, but not so large as to force the buffer to swap to disk, negating the point of 
having the buffer in the first place. 

When doing buffering on HDF data elements, it is best to use the extended tag feature called 
linked-blocks (see section 2.3.7), where the directory entries point not to the data, but to a list of 
blocks containing the data. HDF provides application programming level access to functions that 
can produce arbitrarily long chains of data blocks linked to form a large, expandable data 
element. 

Each block that makes up a linked-block element is also a full-fledged (but somewhat hidden) 
data element. The implication here is that, if you write out an HDF file that contains only a 
single linked-block element and you ask the library to use a small block size, you may end up 
creating several thousand data elements, even though you only really wanted one. The key is to 
ask for a ‘reasonable’ block size. 

Here are some general guidelines in choosing block sizes: 

•	 One large block containing the entire data element yields the best performance. Of course, 
you will not always know how big that block should be, so it could be impractical to follow 
this rule in some cases. 

•	 Choose a block size that makes a compromise between minimizing the number of blocks 
needed to write the expected nominal-size element (large block size) and minimizing the 
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wasted space left in the last block, which may be only partially filled with actual data (small 
block size). 

B.6 Fill Values 

HDF-EOS provides functions for establishing a common fill value for missing data across a 
structure, eg. Swsetfillvalue() is used to define a fill value. The filled data pixels can then be 
compressed out. This value can also be used to replace bad or suspect data in a data structure. 
There is no standard among HDF-EOS users ads to what these values should be, however. It is 
up to the data producer to decide. 
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Glossary and Acronyms


8-bit Raster .....................Refers to a Raster Image where each pixel is represented by a single 
byte. This allows each pixel to be displayed with one of only 256 
possible colors (using an associated color table). Known in HDF as a 
‘RIS8’. 

24-bit Raster....................Refers to a Raster Image where each pixel is represented by three 
bytes, one each for red, green, and blue. This allows each pixel to be 
displayed with one of over 16 million possible colors. Known in HDF 
as a ‘RIS24’. 

Annotation ...................... In HDF language, a plain text data element that can be used to 
describe or identify any other data element, an entire file, or a specific 
tag number. 

API .................................Stands for Application Programming Interface. A set of functions 
designed for use by applications programmers. Often used 
interchangeably with the term ‘subroutine library’, or especially in this 
project, ‘toolkit’. 

Arrays of Records ...........A proposed structure where every element in an array is not a number 
but a record. One could think of Vdatas as a one dimensional version 
of an array of records. 

ASCII Text .....................Plain textual data stored using the American Standard Code for 
Information Interchange. 

Attribute.......................... In HDF language (borrowed from netCDF), a text or binary data 
object used to store a single value or a list of values. Attributes can 
currently be associated with an SDS or an entire file, and are most 
often used for storing metadata. 

Binning ...........................Describes the process of combining data taken at various locations and 
placing the information, properly interpolated, into bin locations that 
are defined on a particular grid. 

Bitmap Image..................A synonym for Raster Image. Bitmap comes from the fact that every 
pixel location has associated with it a string of bits (usually 8 or 24). 

Browse Package .............. In the EOS world, refers to a collection of images, tables, or text that 
is meant to be a representation of a data product. Browse packages are 
designed to be an aid to ordering data, and not to be data in itself. 

CCSDS ...........................Consultive Committee for Space Data Systems 

CDF ................................Stands for Common Data Format. A standard data format developed at 
Goddard Space Flight Center. 
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Color Palette ...................A synonym for Color Table. 

Color Table .....................A table used to map pixel values in raster images to actual colors. 
Color tables are usually 256 entries in size, corresponding to the 256 
possible values in an 8-bit raster image. Each entry in the table 
consists of three numbers: a red, a green, and a blue value to uniquely 
specify the color for that pixel value. 

Computer-Readable......... In this document, computer-readable refers to fields that a computer 
program can read, but not necessarily interpret. An example would be 
where a program could display stored latitude/longitude values from a 
file, but not necessarily use those values in further calculations to say 
display a map grid. 

DAAC.............................Distributed Active Archive Center 

Data Descriptor ...............An internal 12-byte HDF structure containing a Data Identifier, an 
Offset, and a length that uniquely identifies and locates a data element 
within an HDF file. The HDF directory consists of a list of Data 
Descriptors (DDs). 

Data Dictionary...............Refers to a record that contains detailed information about keywords; 
especially keywords used in metadata. An example would be an entry 
for ‘Satellite_Name’ that enumerates a keyword title (“Satellite 
Name”), a field type (“text”), a field width (“10 characters”), and 
perhaps allowed values (“EOS-AM, Tropical Rainfall Measuring 
Mission (TRMM), EOS-PM”, etc.). 

Data Element ..................Refers to the individual components of Data Objects within an HDF 
file. For example, a Data Object of datatype ‘scientific dataset’ would 
consist of several data elements: one for each of the attributes, another 
for the array itself, and so on. 

Data Granule................... In the EOS world, refers to a particular instance of a Standard Data 
Product. 

Data Identifier ................. In the HDF world, refers to combination of a Tag and a Reference 
Number that uniquely identifies a Data Element within an HDF file. 

Data Location.................. In this document, data location refers to values that are meant to be 
used to locate a particular data value. Examples of data locations 
would be X, Y, Z values, or Latitude, Longitude, Altitude values. 

Data Model .....................A description of the conceptual data model of a particular scientific 
data format. For example, one netCDF data model is of a series of 
records, each a different time. Each record contains a series of n
dimensional arrays, each a different physical parameter. Contrast Data 
Model with Disk Format, which defines the actual physical 
organization of the disk files written with that scientific data format. 
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Data Object .....................A particular instance of a Datatype. For example, an HDF file may 
consist of a series of data objects, each of a different datatype (raster, 
n-dimensional array, and so on). 

Data Product ...................Synonym for Standard Data Product. 

Datatype..........................Refers to classes of data structures such as Grids, Swath structures, 
Science Data Tables, and so on that will be supported in HDF-EOS. 
Often there will be an exact mapping of an HDF-EOS datatype to an 
HDF data object. However, there are cases where an HDF-EOS 
datatype is made up of several HDF data objects grouped together. 

DD Block........................A physically contiguous group of Data Descriptors (DDs). One or 
more DD Blocks make up the DD List. 

DD List ...........................The DD List, which is made up of one or more linked DD Blocks, 
contains every DD entry in a HDF file. The DD List can be considered 
as the internal HDF file directory. 

DD..................................See Data Descriptor. 

Dimension Scales............Refers to the series of one dimensional arrays associated with a 
particular Multidimensional Array (SDS). These arrays, one per 
dimension of the SDS, list the data location values (latitude, longitude, 
altitude, for example) for each dimension in the array. Note that this 
way of describing the data locations for an array only works for 
regularly gridded data. 

Disk Format ....................A description of the actual physical byte values and locations stored in 
a disk file written in a particular scientific data format. Contrast with 
Data Model, which refers to the conceptual and not physical 
organization. 

ECS ................................Stands for EOSDIS Core System. Refers to the core software and 
hardware system used to support EOSDIS. 

EOS ................................Stands for Earth Observing System. 

EOSDIS ..........................Stands for Earth Observing System Data and Information System. 
Refers to the ground based data archive and management system for 
EOS. 

EOSView........................Our multi-platform HDF-EOS analysis and visualization application. 
Also called an ‘HDF-EOS cracker tool’, for its ability to display HDF-
EOS file contents and organization. 

Equal-Angle Grid............A way of storing geolocated data where the size of each bin location is 
defined by fixed degree changes in latitude and longitude. The 
problem with this method of storing data is that each degree of 
longitude represents very different distances at high and low latitudes. 
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Equal-Area Grid..............A way of storing geolocated data where each the size of each bin 
location are defined by fixed distances. The problem with this method 
of storing data is that the number of bins has to be different for every 
latitude. 

ESDIS.............................Earth Science Data and Information System 

ESDT..............................Stands for Earth Science Data Type. Refers to a higher level structure 
of EOS data than CSDTs. For the most part, ESDT refers to particular 
classes of Standard Data Products: Every standard data product is of a 
particular ESDT. 

Extended Tags.................An extended tag DD does not point directly to the data, but to a data 
element defining where the data is and how it is stored. This data 
object may point to the beginning of a linked list of data blocks that 
contain the entire data record. Alternatively, the extended tag record 
could define the data element as being stored in an External Element 
in another disk file. 

External Elements ...........An external element is an HDF data element that is stored not inside 
the physical HDF file, but as a separate physical file. 

FGDC .............................Stands for Federal Geographic Data Committee. The FGDC has 
proposed a set of metadata data standards, for possible use in 
geolocated earth data. These standards include supported keywords, 
along with allowed values. 

FITS................................Stands for Flexible Image Transport System; a data format popular in 
the astronomy field. 

ftp ................................... file transfer protocol 

Geolocation.....................Refers to data locations that are specific to physical locations on the 
Earth, or on another planetary body. Geolocation is usually (but not 
always) specified in terms of latitude, longitude, and altitude. 

Granule ...........................Synonym for Data Granule. 

Grid ................................Refers to a particular example of a Gridding scheme. 

Grid Structure .................Refers to an HDF-EOS datatype that will be designed to support 
gridded data, by making the geolocation information for the grid data 
computer-comprehensible. 

Gridding..........................For EOS, refers to schemes for dividing locations on the Earth or on a 
projection of the Earth into many bins or cells. Each bin has a unique 
spatial location on the Earth. Although independent of projection, 
gridding schemes should be chosen to map well to a given projection: 
for example, projections that favor one area of the Earth in some way 
should have many bins in that location. 

GL-4 175-WP-001-002




GSFC..............................Goddard Space Flight Center 

GUI.................................Stands for Graphical User Interface. 

HDF................................Stands for Hierarchical Data Format. The format was developed and is 
maintained by NCSA at UIUC. 

HDF-EOS .......................A shorthand notation for our proposal of establishing EOS 
conventions for the organization of HDF files used by the EOS system 
and the software library that will implement and enforce them. 

HTML.............................Hypertext Markup Language 

http..................................hypertext transport protocol 

IDL .................................Stands for Interactive Data Language. A cross-platform data 
manipulation and visualization tool developed by Research Systems, 
Incorporated. 

Image..............................Synonym for Raster Image. 

Indexed Pointer ...............A data value that by HDF-EOS convention refers to a particular data 
element, or a particular location within a data element. Can be used to 
create links between tables and data elements. 

Interlacing.......................Refers to the process of deciding how to organize the storage of an 
array: in particular, deciding which data locations will be close to each 
other physically. For example, a 3D array that was interlaced by 
altitude would have every 2D altitude plane stored together. 

Interleaving.....................Synonym for Interlacing. 

ISCCP............................. International Satellite Cloud Climatology Project 

JPEG...............................Stands for Joint Photographic Experts Group. A lossy compression 
method for 24-bit raster images. The method has been expanded to 
include 8-bit images, as well. 

Length............................. In HDF, the number of bytes that comprise a data element. 

Lookup Table..................A synonym for Color Table. 

Low-Level Interface........Refers to APIs that refer to data elements such as arrays, attributes, 
and so on. Compare to a High-Level Interface, where data is referred 
to as Swaths, Grids, and so on. 

LUT ................................Look Up Table. Yet another synonym for Color Table. 

Metadata .........................Data that describes data. This term is fairly nebulous, as one person’s 
data is someone else’s metadata. In this document, we use the term 
Metadata to refer to ‘Parameter=Value’ information that is associated 
with a Standard Data Product, such as “SPACECRAFT_ID=‘EOS_AM’ ”. 
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Multidimensional Array ..A synonym for N-dimensional Array. 

MultiFile SDS.................An API for Scientific Datasets that lets you access to more than one 
SDS in more than one file at the same time. Commonly known as the 
“SD” interface. The term can also be used to describe the data object 
produced by the API, which supersedes the NDG and the SDG. 

N-Dimensional Array......Refers to an array of any dimension that contains either scalar data 
values or a record of various data values at every data location in the 
array. 

NASA .............................National Aeronautics and Space Administration 

NCSA .............................Stands for National Center for Supercomputing Applications. HDF, 
NCSA Image, Datascope, NCSA Telnet, NCSA Mosaic, and Collage 
are all creations of NCSA. 

NDG ...............................Stands for Numeric Data Group. Refers to the data objects created 
with the ‘DFSD’ SDS interface. We recommend using the ‘SD’ 
interface, which produces Multifile SDSs, for EOS data. 

netCDF ...........................network Common Data Form. netCDF is another data format library, 
developed by Unidata, which is freely available and is primarily used 
by the atmospheric science community. 

Numerical Scales.............Synonym for Dimension Scales. 

ODL................................Stands for Object Description Language. Developed by the Planetary 
Data System at the Jet Propulsion Laboratory, it is a text-based 
language for describing metadata and data dictionaries. 

Offset .............................. In HDF, offsets are used to specify the location of data elements. 
These offsets are expressed as a number of bytes from the beginning 
of the file. 

Palette .............................Yet one more synonym for Color Table. 

Point Data .......................Refers to data collected at random locations, that cannot easily be 
stored on a regular grid. An example would be a record of temperature 
measurements taken at various airports across the country. 

Point Structure ................Refers to a proposed HDF-EOS datatype for storing Point Data. 

Projection........................Used here to mean a set of transformation equations that map a sphere 
onto a flat surface. 

Pseudocolor Image..........Here, a synonym for Raster Image. 

Raster Image ...................A rectangular array that is meant to be displayed on a computer 
screen, with each element in the array corresponding to a particular 
pixel in the computer display. 
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Raster Image Group ........ In HDF, a structure for gathering the data elements required to 
represent a raster image. It is  like a Vgroup, but is specific to raster 
images. 

Record ............................ In HDF, a term used to refer to the repeated sequence of fields in a 
Vdata. 

Reference Number ..........A unique number assigned to an HDF data element to distinguish it 
from other element with the same tag number. 

RIG.................................Abbreviation for Raster Image Group. 

RIS24..............................Abbreviation for the 24-bit Raster Images provided in HDF. Also 
refers to the subroutine library  for reading and writing 24-bit raster 
images. 

RIS8................................Abbreviation for 8-bit Raster Images provided in HDF.  Also refers to 
the subroutine library  for reading and writing 8-bit raster images 

RLE ................................Stands for Run Length Encoding. A compression method used in the 
RIS8 interface wherein contiguous runs of pixels with the same color 
value are expressed as a single color entry with a pixel count. 

RTF ................................Stands for Rich Text Format. An ASCII-encoded format for storage of 
formatted text. 

Scalar Arrays ..................An N-dimensional rectilinear data structure in which all data values 
are of the same basic type (e.g., 4-byte integer). 

Science Data Table..........A proposed EOS datatype organized as a set of named columns and a 
set of rows where each row contains one entry for each column. 
Should be very similar to Vdatas. 

Scientific Dataset ............A data model and API provided in HDF for the reading and writing of 
multidimensional homogeneous arrays of data and the attributes of 
such arrays. The term is also used to refer to the data object produced 
by the API. 

SDF ................................Stands for Standard Data Format. Refers to the standard format used 
for EOS data. Currently the HDF file format has been designated as 
the SDF for EOS. 

SDG................................See Scientific Data Group. 

SDS ................................See Scientific Data Set. 

Self-describing ................With a self-describing data file, no outside information is needed to 
fully comprehend the contained data, other than a subroutine library 
encapsulating the file format design. 

Single File Interface ........An API that allows access to only one file at a time. HDF has only 
recently begun to move away from this method of file access. 
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Standard Data Product..... 

Station Data ....................Term used to refer to data that comes from a fixed location, with 
respect to the Earth. 

Swath..............................A data model for the reading and writing of data oriented around 
satellite orbital track. An API for swath data will be designed for 
HDF-EOS. 

Swath Structure...............Our proposed EOS datatype for organizing swath data, especially 
with making sure geolocation is in standard places. 

Table............................... In this document, a synonym for Science Data Table. 

Tag.................................. In HDF-speak, a number assigned by the HDF library that identifies 
the nature or intended interpretation of the data in a data element. 

TIFF................................Stands for Tagged Image File Format. 

TRMM............................Tropical Rainfall Measuring Mission 

UIUC ..............................Stands for the University of Illinois at Urbana-Champaign. 

V0...................................Usually refers to the operational prototype of the EOSDIS system. 

V1...................................Usually refers to the first release of the EOSDIS system. 

Vdata ..............................A record-oriented HDF data model and API provided in HDF. A 
Vdata corresponds to a data table, where each fixed-length record is 
made up of a set of individually named and typed fields which make 
up the columns of the table. Science Data Tables make extensive use 
of Vdata. 

Vdata Field .....................A named and typed set of data values that make up one column in the 
table-like Vdata structure. 

Vgroup............................An arbitrary grouping mechanism in HDF used to signify associations 
between otherwise unrelated data objects. 
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